Микро БИЛЕТЫ до 33

Билет 1
1. Определение м/б как науки, мед. м/б: определение, цели, задачи, значение в практнч. Деят-ти
врача
Микробиология это раздел биологии, изучающий закономерности жизни и развития микроорганизмов в их единстве с окружающей средой. Эта наука изучает свойства микроорганизмов, а также их влияние на макроорганизмы. Бактерии заселили Землю много миллиардов лет назад, задолго до появления первых высших растений и животных, а в настоящее время представляют самую многочисленную и разнообразную группу живых организмов.
Обилие материала, накопленного за период научного развития микробиологии, обусловило необходимость разделения этой науки на ряд специализированных направлений:
1. Общая микробиология изучает строение и жизнедеятельность микроорганизмов, их распространение в природе, наследственность и изменчивость.
2. Медицинская микробиология изучает микроорганизмы, вызывающие заболевания человека, и процессы, происходящие в организме при внедрении болезнетворных микроорганизмов.
3. Сельскохозяйственная микробиология или агромикробиология, изучает микроорганизмы, играющие роль в повышении плодородия почвы, создании удобрений.
4. Ветеринарная микробиология изучает микроорганизмы, вызывающие заболевания животных.
5. Промышленная изучает микроорганизмы, которые используют в производстве пищевых продуктов, антибиотиков и других лекарственных веществ, создает способы защиты от вредного воздействия.
Основной задачей микробиологии является изучение свойств микроорганизмов, которые окружают нас повсюдув воде, почве, организме человека и животных, с целью использования полезных для человека свойств микроорганизмов в различных отраслях народного хозяйства, а также микроорганизмов, вызывающих заболевания человека и животных, с целью воздействия на них специфической терапией и профилактики инфекционных заболеваний.
Кроме того, в санитарно-бактериологических лабораториях проводят исследования с целью выявления степени микробного загрязнения внешней среды и различных объектов роддом, хирургические отделения и т. д.
Медицинская микробиология подразделяется на:
бактериологию наука о бактериях;
вирусологию наука о вирусах;
иммунологию наука о механизмах защиты организма от патогенных и непатогенных агентов;
микологию, изучающую патогенные для человека грибы;
* протозоологию изучает одноклеточные патогенные организмы;
* паразитологию изучает гельминтов.
Задачей медицинской микробиологии является разработка методов лабораторной диагностики инфекционных болезней с целью создания медицинских препаратов для их предупреждения и лечения.
2. Определение ннфекц. Процесса (инфекции), инф. Болезни. Факторы ииф. Процесса. Особ-ти инф. Болезней.
Инфекция (позднелат. infectio заражение) это внедрение и размножение микроорганизмов в макроорганизмУ с последующим развитием различных форм их взаимодействия от носительства возбудителей до клинически выраженной болезни.
Инфекционные заболевания распространены во B мире. Известно около 3 тыс. инфекционных болезней, KOI торыми может заболеть человек. Возбудителями их являются различные микроорганизмы: бактерии, простейшие, риккетсии, вирусы, актиномицеты (актиномицеты лучистые грибки, совмещают в себе черты бактерий и простейших грибов), спирохеты. Инфекция это биологическое явление, которое включает любые формы взаимодействия макроорганизма и патогенных бактерий. В зависимости от локализации микроорганизмов, Л.В. Грома-шевским была предложена классификация инфекционных болезней. В соответствии с этим основным признаком все инфекционные болезни разделены на 4 группы:
1) кишечные инфекции;
2) инфекции дыхательных путей;
3) кровяные инфекции;
4) инфекции наружных покровов.
1. Кишечные инфекции. Для кишечных инфекций характерна локализация возбудителей в кишечнике, которые проникают в организм через рот, чаще с пищей или водой, затем с испражнениями попадают во внешнюю среду. Подъем заболеваемости кишечными инфекциями наблюдается в теплое время года, что обусловлено увеличением численности мух, употреблением человеком большого количества плохо промытых овощей и фруктов.
К кишечным инфекциям относятся: брюшной тиф, холера, дизентерия, сальмонеллез, вирусный гепатит А, пара-тифы, бруцеллез, ботулизм и др. Основными способами борьбы с кишечными инфекциями являются соблюдение личной гигиены, мытье рук, своевременное выявление и изоляция больных и носителей.
2. Инфекции дыхательных путей, которые передаются воздушно-капельным или воздушно-пылевым путем. При инфекциях дыхательных путей возбудители локализуются в слизистых оболочках дыхательных путей и отсюда с капельками слизи выделяются при выдохе, кашле, чихании, разговоре и даже плаче и передаются здоровым людям.
В связи с тем, что инфекции дыхательных путей легко передаются от больного человека и носителя здоровому, некоторыми из них переболевает почти все население, а иногда и по несколько раз. Часть болезней выделена в подгруппу детских инфекций (дифтерия, скарлатина, корь, коклюш, эпидемический паротит, ветряная оспа, краснуха), которыми переболевают чаще в детском возрасте. К инфекциям дыхательных путей также относятся: ангина, грипп, парагрипп, менингококковая инфекция, аденовирусные инфекции. При таких инфекциях важно своевременное выявление больных и носителей, а также проведение мероприятий, направленных на разрыв механизма передачи возбудителей: борьба со скученностью, аэрация и кварце-вание помещений, ношение масок, дезинфекция и т.д.
3. Кровяные инфекции, или трансмиссивные. К этой группе относятся инфекционные болезни, возбудители которых проникают в ток крови при укусе насекомых или жи-
вотных. К этим инфекциям относятся: сыпной тиф, геммо-рагические лихорадки, чумы, вирусные гепатиты В и С, вирусные энцефалиты, туляремия. Для профилактики некоторых болезней этой группы применяется вакцинация (гепатит В).
4. Инфекции наружных покровов. Контактный механизм передачи. Заражение наружных покровов происходит при попадании патогенных микробов на кожу или слизистые оболочки здорового человека. При одних инфекциях возбудитель локализуется в месте входных ворот, при других поражает кожные покровы, проникает в организм и с током крови попадает в различные органы и ткани (сибирская язва, рожа). При инфекциях половых органов возбудители передаются половым путем (гонорея, сифилис). Основными мероприятиями по борьбе с инфекциями наружных покровов являются: изоляция больных, уничтожение больных животных, проведение санитарно-просветительс-кой работы среди населения, соблюдение правил личной гигиены.
3. Стафилококки
В этой обширной группе микроорганизмов встречаются как сапрофиты, обитающие в окружающей среде, так и патогенные виды. Стафилококки повсеместно распространенные бактерии. Первых представителей этого рода выделили Л. Пастер и Р. Кох (1878 г.).
Морфологические и культуральные свойства. Стафилококки это небольшие круглые клетки диаметром 0,51,5 мкм, после деления располагаются в мазках одиночно, парами или в виде гроздьев винограда. Стафилококки неподвижны, спор и капсул не образуют. Грамположительные. По типу дыхания стафилококки являются факультативными анаэробами. Хорошо растут на простых питательных средах (рН 7,27,4) с 510% NaCl. На плотных средах образуют мелкие колонии, гладкие, слегка выпуклые. Могут быть белого, желтоватого, кремового цвета. Цвет колоний обусловлен наличием липохромного пигмента, его образование происходит только в присутствии кислорода. Пигмент стафилококков это сложное соединение, состоящее из 13 ка-ротиноидных фракций. (По приказу №181S. aureus идентифицируют по наличию пигмента.) Стафилококки обладают сахаролитичесими и протеолитическими ферментами. Патогенные свойства стафилококков обусловлены способностью вырабатывать экзотоксин и наличием микрокапсул. Стафилококковый экзотоксин содержит ряд фракций: лейкоциди-ны, гемолизины, летальный яд. Гемолитическую способность стафилококков (и других микроорганизмов) определяют при посеве на кровяной агар, на котором через 18 24 часа вокруг колонии стафилококка видна прозрачная зона зона гемолиза. Антигенная структура стафилококков очень сложная. У стафилококков известно около 30 антигенов, представляющих собой белки, полисахариды. Ви-доспецифичными антигенами являются тейхоевые кислоты. Типовой вид S. aureus (золотистый стафилококк).
Резистентность. Среди патогенных микроорганизмов стафилококки наиболее устойчивы в окружающей среде. Они хорошо переносят высушивание, сохраняя при этом вирулентность. Очень хорошо переносят замораживание могут сохраняться при низких температурах несколько лет. Прямой солнечный свет убивает стафилококки в течение нескольких часов. При нагревании до 70°С погибают в течение 1 часа, до 80°С через 1020 минут. Зато эти микроорганизмы менее устойчивы к действию дезрастворов: 1% раствор хлорамина убивает их через 25 минут. Стафилококки способны быстро приобретать устойчивость к антибиотикам. Особенно они устойчивы к антибиотикам пе-нициллипового ряда.
Эпидемиология. Стафилококки являются нормальными обитателями кожи и слизистых оболочек человека. В биоценоз человека входит до 14 видов стафилококков. Всего известно 30 видов этих микроорганизмов. В основном они локализуются на слизистой носа и зева. Золотистый стафилококк встречается примерно у 2930% здорового населения. Такие люди считаются носителями патогенного стафилококка. В большинстве случаев носительство протекает несколько недель или месяцев; хроническое носительство типично для медицинского персонала; пациентов, страдающих различными дерматитами. Стафилококковому носительству способствует поздняя диагностика и поздняя санация. Важную роль в инфицировании стафилококком играют тесные контакты с носителями и людьми, страдающими стафилококковыми заболеваниями. Наиболее подверженной группой являются дети, особенно новорожденные. Очень опасно попадание стафилококка в пупочную рану. S. aureus может циркулировать среди животных: крупный рогатый скот, собаки, кошки.
Патогенез поражений. Факторы патогенности стафилококка: микрокапсула, ферменты и токсины.
Микрокапсула защищает клетки от фагоцитов организма, а также способствует адгезии стафилококков к органам и тканям. Ферменты проявляют самое разное действие. Наиболее ярко выражены у золотистого стафилококка, который продуцирует различные ферменты: 1) каталаза защищает бактерии от действия кислородозависимых механизмов фагоцитов; 2) ряд ферментов, разлагающих сахара: лактозу, мальтозу, глюкозу, маннит; 3) плазмакоагулаза приводит к свертыванию белков плазмы; 4) фибринолизин; 5) гиалу-ронидаза способствует распространению возбудителя в организме; 6) ДНКаза и др.
Стафилококк образует ряд токсинов:
1) гемолизины вызывают гемолиз на кровных средах. Золотистый стафилококк способен синтезировать несколько типов гемолизинов а, р, у. Из стафилококкового о гемолизина получают стафилококковый анатоксин, а-ге-молизин не активен в отношении эритроцитов человека, но быстро лизирует эритроциты барана, р-гемолизин вызывает теплохолодовой шок этот тип токсина хорошо выявляется при смене температур (максимальная активность проявляется при низких температурах), у-гемолизин лизирует различные эритроциты, что обусловливает токсичность широкого спектра действия; 2) эксфолиатин вызывает стафилококковый синдром ожога кожи, в результате того, что этот токсин слу-щивает гранулярные клетки эпидермиса кожи;
3) лейкоцидин вызывает деструкцию лейкоцитов, угнетение фагоцитарного звена. Этот токсин обнаружен у штаммов, выделенных от больных людей;
4) энтеротоксины накапливаются в продуктах питания (например, в кондитерских изделиях, содержащих крем), что может привести к пищевым отравлениям и вызвать у человека рвоту, диарею. При этом развивается псевдомембранный энтероколит.
Клинические проявления. Известно более 100 клинических форм проявлений стафилококковых инфекций. Стафилококки способны поражать практически любые ткани и органы человека. При снижении защитных сил организма эти микробы вызывают следующие гнойно-воспалительные заболевания: ангины, отиты, холециститы, пневмонии, сепсис, фурункулез. Особенно велика их роль в акушерско-ги-некологической практике, так как они могут вызывать маститы у рожениц и сепсис у новорожденных. Стафилококковые инфекции протекают очень тяжело, часто с летальным исходом. Также золотистый стафилококк является основным возбудителем инфекций опорно-двигательного аппарата (остеомиелиты, артриты); в частности, он вызывает 7080% случаев септических артритов у подростков, реже у взрослых. Иммунитет после перенесенных стрептококковых инфекций остается непродолжительным. Лица, которые являются носителями стафилококка, чаще болеют кожными стафилококковыми инфекциями.
Лечение и профилактика. При лечении стафилококковых инфекций обычно применяются антибиотики. Для этого целесообразно определить чувствительность стафилококков к тем или иным антибактериальным средствам. В тяжелых или хронически протекающих случаях следует применять антитоксическую противостафилококковую плазму или донорский антистафилококковый иммуноглобулин, который получают из крови добровольцев-доноров, иммунизированных адсорбированным стафилококковым анатоксином. Этот
анатоксин можно также использовать для иммунизации плановых хирургических больных и беременных.
Профилактические меры борьбы со стафилококковыми инфекциями заключаются в проведении санитарно-гигиенических мероприятий и санации хронических носителей.











































































Билет 2
Основные этапы развития м/б как науки. Достижения мед. м/б на совр. Этапе.
Этапы развития микробиологии:
1. эвристический;
2. морфологический (описательный);
3. физиологический (пастеровский);
4. иммунологический (вирусологический);
5. современный (молекулярно-генетический).
Эвристический этап развития микробиологиидревние времена
Хлебопечение, виноварение, сыроварение. Это был опытный этап вразвитии микробиологии. Люди стали шире использоватьмикроорганизмы для своих целей.Одними из древних врачевателей, которые былиосновоположниками идей микробиологии, являются Гиппократ иАвиценн. Эти корифеи строили свои выводы на наблюдения.Например, Гиппократ писал: «Куда редко заходит солнце, туда чащезаходит врач». Это утверждение обосновывается губительным действиемпрямых солнечных (
·
·) для многих микроорганизмов.Джираламо Фракасторо выделил особые организмы, невидимыеглазу, и назвал их «миазмы». Он считал, что миазмы, а на самом делеболезнетворные микроорганизмы ызывают заболевания. Также им былопредположено, что миазмы переходят от больного человека к здоровому.Это явилось предпосылками возникновения первых эпидемиологический
мероприятий.
Морфологический (описательный) этап развитиямикробиологии1 половина 17 века – 2 половина 18 векаДанный этап связан с работами и опытами Антония Левенгука (1632-1723). Это был голландский предприниматель и мореплаватель. Значениеего работ трудно переоценить. С помощью микроскопа, который былизготовлен собственными руками, Левенгук заложил начало орфологиимикроорганизмов. До сих пор мы пользуемся 4 основнымиморфологическими формами микроорганизмов по Левенгуку. Такжебыли описаны эритроциты, сперматозоиды, порша, стригущий лишай имногие другие субстраты. Все свои открытия Антоний Левенгук изложилв книге «Тайны природы, открытые Антонием Левегуком».
Физиологический (пастеровский) этап развитиямикробиологии1 половина 19 века – 2 половина 19 векаБольшое значение имели работы французского химика Луи Пастера(1822-1895).
1857 год – теория брожения.
1860 год – теория самопроизвольного зарождения жизни на Земле.
1865 год – «о болезнях вина и пива». Были исследованы случаиприготовления вина и пива, которые приводили к скисанию данныхпродуктов. Выяснилось, что в процессе их приготовления прямую рольиграют бактерии. В связи с этим было предложено герметично закрытьемкости с продуктами.
1867 год – Листер «Об антисептическом принципе в хирургическойпрактике»
1870 год – опровержение теории самопроизвольного зарождения жизнина Земле. Опыт проводился с помощью знаменитой колбы Пастера.Открытие Пастером одного из возбудителей газовой гангрены и родовойгорячки.
1881 год – «Зараза и вакцина». Открыты возбудители куриной холеры,сибирской язвы.
1886 год – Мечников и Тамаля организовали в Одессе лабораторию, вкоторой была разработана и массово применялась вакцина дляпрофилактики бешенства.
1892 год – Ивановский открыл вирус табачной мозаики.
1898 год – Ф. Леффлер и П. Фрош открыли вирус ящура.
Пауль Эрмих ввел понятия об активном и пассивном иммунитете и создалтеорию гуморальной регуляции.
Иммунологический (вирусологический) этап развитиямикробиологии 1 половина 20 века
Были открыты возвратный тиф, лептоспироз, сифилис, хламидии,токсоплазма.Риккетс и независимо от него еще два ученых (Э. Роха-Лима и С.Провацкий) открыли новую группу микроорганизмов – риккетсии. К нимотносятся возбудители сыпного тифа и других лихорадок.Важным этапом явилось открытие фильтрующихся вирусов,которые могли проходит через биологические фильтры. В 1901 году былоткрыт первый фильтрующий вирус. В 1911 году П. Раус открылонкогенный вирус. В 1917 году открыты бактериофаги д`Эррель.Для изучения свойств вирусов необходимо было его периодическивоспроизводить, но на обыкновенных питательных средах он не могвоспроизводиться. В 1933 году А. Вурафф и Э. Гудпасчер предложилиразмножать вирус внутри куриного эмбриона.
М. Игон в 1944 году выделил возбудитель атипичной пневмонии,который отнесли к новому классу – классу микоплазм.Ш. Кальмет и К. Герен получили вакцину БЦЖ.В 20-х годах Г. Рамон создал анатоксины для профилактикидифтерии и столбняка. Разработаны серологические реакции для
диагностики сифилиса – реакция Весермана, брюшного тифа и паратифа– реакция Видаля, сыпного тифы – реакция Вейля-Феликса.П. Эрлих был основоположником химиотерапии. В своей концепции
«большой стерилизующей терапии» он говорил о химическихсоединениях («волшебных пулях»), которые избирательно фиксируясь нарецепторах микробной клетки, оказывает угнетающее действие только нанее, при этом другие клетки организма не страдают. Он установилгубительное действие некоторых красителей на организм бактерий.Например, возбудитель сифилиса.В начале 30-х годов был синтезирован плазмахин (первыйзаменитель хинина) – противомалярийный препарат. Второй заменительхинина – атебрин был синтезирован в 1932 году сначала в Германии, азатем в России.
В конце 30-х годов начали синтезировать сульфаниламидныепроизводные, оказывающие антибактериальное действие. К этимоткрытиям причастны 1937 год - И. И. Постовский и Л. Н. Гульдерев(русские), Эван и Филипс.
1928 год – А. Флеминг открыл пенициллин. 1940 год – Г. Флори и Э.
Чейн получили стабильную форму пенициллина. Ваксман назвал эти вещества «антибиотиками», а в 1944 году он получил стрептомицин.
Современный (молекулярно-генетический) этап развития микробиологии
2 половина 20 века – до сегодняшнего дня1944 год – О. Эвери, К. Мак-Леод и К. Мак-Карти показали, чтогенетический материал заключен в ДНК, а в 1953 году Ф. Крик и Д.Уотсон раскрыли структуру ДНК.Были открыты обособленные ДНК-плазмиды, транспозоны –внехромосомные факторы наследственности.В 60-70 годах было доказано, что плазмиды значительно влияют наболезнетворные свойства бактерий, особенно на их резистентность кхимиопрепаратам.1953 год – А. Львов показал способность фаговой ДНК встраиваться вгеном бактерии. В 1959 году А. Коренберг и М Гулиан получилиискусственную вирусную ДНК.1982 год – Р. Гало выделил Т-лимфотропный вирус, а в 1983 году Л.Монтенье – вирус СПИДа.Открыты механизмы специфического распознавания антигенов клетками иммунной системы человека и животных. 1959-1961 год – Р.Портер и Д. Эдельман расшифровали структуру антитела, что привело кизучению и систематизации иммуноглобулинов.
Анатоксины: определение, получение , практическое применение
Анатоксины
Анатоксины это обезвреженные экзотоксины микроорганизмов. При действии на микробы 0,4% формальдегида, при 40° С в течение месяца токсины переводятся в анатоксины. Впервые способ приготовления анатоксинов был предложен французским ученым Рамоном. Анатоксины получены из экзотоксинов дифтерийного, столбнячного, дизентерийного, ботулинического и стафилококкового микробов, а также из токсинов яда змей и яда растений. При использовании анатоксинов в организме вырабатывается антитоксический иммунитет.
Анатоксины относятся к наиболее эффективным иммунобиологическим препаратам. Введение анатоксинов в организм создает у человека активный искусственный иммунитет.
Поливалентные вакцины могут содержать как бактериальные компоненты, так и анатоксины. Например, АКДС адсорбированная коклюшно-дифтерийно-столб-нячная вакцина, которая содержит убитые коклюшные бактерии и анатоксины столбнячного и дифтерийного микробов. Применение комплексных вакцин упрощает схемы вакцинации при проведении массовой иммунопрофилактики.
Стрептококки
Этот род представлен более 20 видами бактерий, среди которых встречаются как патогенные, так и представители нормальной микрофлоры человеческого организма.
Впервые стрептококки были описаны Бильротом в 1874 г.
Морфологические и культуральные свойства. Стрептококки это мелкие шаровидные клетки размером 0,52,0 мкм; в мазках располагаются парами или цепочками, грам-положительные, спор не образуют, жгутиков не имеют. Некоторые стрептококки образуют нежную капсулу. Факультативные анаэробы. Opt pH 7,27,6, t 37°C. Растут на питательных средах, обогащенных кровью, сывороткой. На плотных средах образуют мелкие колонии сероватого цвета.
По классификации Брауна (1919) стрептококки разделены на 3 группы:
р-гемолитические дают полный гемолиз на кровяном агаре S. piogenes, некоторые энтерококки.
а-зеленящие стрептококки дают зеленящую зону гемолиза S. pneumoniae.
у-негемолитические стрептококки не образуют зону гемолиза на кровяном агаре.
Для человека самыми патогенными являются стрептококки р-гемолитические, большая часть которых относится к серогруппе А. Стрептококки подразделяются на серогруп-пы на основе специфичности полисахаридного антигена. Определяются 17 серологических групп по лэнсфилд обозначают заглавными латинскими буквами. S. pyogenes это
стрептококк серогруппы А. Стрептококки этой группы вырабатывают более 20 веществ, обладающих антигенностью.
Резистентность. В окружающей среде в пыли, на различных предметах сохраняются долго, но при этом утрачивают свою патогенность. В высушенном гное и мокроте могут сохраняться месяцами. Низкие температуры переносят хорошо. Стрептококки погибают при 56°С в течение 30 мин, 35% раствор карболовой кислоты убивает их в течение 15 мин.
Эпидемиология. Стрептококки группы А встречаются повсеместно и могут являться постоянными обитателями слизистой рта и зева человека. Частота носительства может достигать 25 %. Основной резервуар инфекции больной человек или носитель. Основным механизмом передачи стрептококковой инфекции является контактно-бытовой. Также эти возбудители могут передаваться воздушно-капельным путем.
Патогенез поражений. Стрептококки группы А обладают адгезивными свойствами, также на поверхности клетки имеется белковый антиген М, который препятствует фагоцитозу. А как известно, эти свойства присущи патогенным микроорганизмам антимикробного потенциала фагоцитов и облегчают адгезию к эпителию.
Клинические проявления. S. pyogenes вызывает у человека многие болезни: скарлатину, фарингит, рожистое воспаление, эндокардит, послеродовой сепсис, ревматизм.
Скарлатина это инфекционное заболевание, которым в основном болеют дети от года до 5 лет. Заражение скарлатиной происходит воздушно-капельным путем. Заболевание характеризуется появлением кожных точечных высыпаний или мелких пятен красного цвета на шее и верхней части грудной клетки. После перенесения скарлатины у человека вырабатывается очень стойкий иммунитет, что нехарактерно для стрептококковых инфекций.
Рожистое воспаление чаще всего развивается на месте предшествующей травмы или в местах инъекций. Инкуба-
ционный период рожистого воспаления от нескольких часов до 56 суток. Для этого заболевания характерно острое начало: очень высокая температура до 40°С, озноб, слабость, головная боль. На пораженном участке кожи в первые сутки появляются отеки, гиперемия. В тяжелых случаях у больных может развиваться инфекционно-токсических шок.
Стрептококки группы В в основном обитают на слизистой носоглотки, в ЖКТ и влагалище. S.agalactiae вызывает урогенитальное, фарингиальное носительство. У новорожденных вызывает сепсис, менингиты. Стрептококковая пневмония может развиваться на фоне респираторных вирусных инфекций, как вторичное проявление болезни. Заражение организма человека вирусами увеличивает чувствительность легочной ткани к стрептококкам.
Поражения, вызванные стрептококками этой группы, можно наблюдать как у взрослых, так и у детей.


Билет 3
1. Работы Пастера, их значение в развитии и становлении м/б
Середина XIX в. явилась поворотным этапом в развитии микробиологии. В этот период она обогатилась новыми данными из физики, химии и биологии. Самым гениальным ученым XIX в. по праву был признан француз Луи Пастер (18221895). Это был удивительный человек, который добился упорным трудом очень многого. Когда Па-стер уже был всемирно известным ученым, он сказал: «В жизни нужно посвятить все усилия, чтобы наилучше делать то, на что способен. Позвольте сообщить вам секрет моей удачи. Моя единственная сила это мое упорство». В 26 лет у Л. Пастера было готово две докторские диссертации одна по химии, другая по физике. А вот открытия, которые совершил ученый в области микробиологии: впервые доказал, что брожение это не химический процесс, а биологический и есть результат жизнедеятельности дрожжевых грибков. Также Л. Пастер доказал, что некоторые микроорганизмы могут жить и размножаться без кислорода.
Чтобы рассказать о заслугах Л. Пастера, надо написать целую книгу. Впервые в истории науки Пастером были разработаны методы уничтожения микроорганизмов при воздействии на них высоких температур. Этот метод был положен в основу стерилизации. В 1879 г., работая с возбудителем куриной холеры, Пастер установил, что в определенных условиях культивирования патогенные микробы теряют свою вирулентность. На основе этого открытия он создает вакцины. В 1885 г. Пастер предложил прививки против бешенства. Научные открытия Л. Пастера показали роль микроорганизмов в возникновении инфекции. Он научился выращивать бактерии в искусственных питательных средах, но не знал способа обнаружения возбудителя в каждом отдельном случае инфекции.
2. Эволюция микробного паразитизма, п происхождение патогенных м/о
Пневмококки
Пневмококки были описаны Пастером в 1871 г. Это пар-норасположенные кокки, овальной формы. В организме человека и животных образует капсулу. Неподвижны, спор не образуют, факультативные анаэробы, грамположительные. Хорошо растут на средах с добавлением крови.
Вирулентность стрептококков связана с веществом капсулы. По капсульному антигену пневмококки делятся на 85 сероваров. Большинство сероваров пневмококков это нормальные обитатели верхних дыхательных путей. При ослаблении защитных сил организма они способны вызывать пневмонию.
Эпидемиология. Ежегодно по всему миру регистрируются около 500 тыс. случаев пневмококковых пневмоний. Наиболее часто это заболевание встречается у детей и лиц преклонного возраста. Основным источником инфекции являются больные и бактерионосители. Основной путь передачи контактный, а в период вспышек воздушно-капельный. Пик заболеваемости приходится на холодное время года
(при переохлаждении организма снижаются его защитные силы).
Клинические проявления пневмонии. При крупозной пневмонии поражаются доли или все легкое. Заболевание начинается внезапно: повышается температура; озноб; сухой кашель и боли в грудной области. У пожилых людей, наоборот, заболевание развивается медленно, с нарушением сознания и признаками легочно-сердечной недостаточности.
После перенесенного заболевания у человека вырабатывается непродолжительный иммунитет.
Специфическая профилактика пневмонии отсутствует. Личная профилактика сводится к закаливанию организма.
Зеленящие стрептококки
Стрептококки этой группы чаще всего выделяют из полости рта и кишечника человека. Обитая в полости рта, микробы расщепляют углеводы или азотистые вещества пищи с образованием кислоты и щелочи. Избыточное накопление кислот способствует растворению зубной эмали, что приводит в результате к кариесу зубов. Наибольшую группу стрептококков, находящихся во рту, составляют S. mitis они локализуются в щелях между десной и поверхностью зуба, что вызывает воспаление зубной пульпы, а при стоматологических манипуляциях (удаление зуба) может вызвать по-дострый эндокардит и другие осложнения.
Str. salivarius обитает в слюне и на спинке языка, вызывает кариес поверхности корня. Str. sanguis также вызывает кариес зубов.
Бактериальные эндокардиты развиваются при проникновении зеленящих стрептококков в кровоток. Такие эндокардиты сопровождаются поражением сердечных клапанов. Поражения сопровождаются лихорадкой, потерей массы тела, потливостью и другими симптомами.Лечение таких заболеваний не отличается от терапии, проводимой при других стрептококковых инфекциях.




Билет 4
1. Мечников и Эрлих, их учение о невосприимчивости к инф. Болезням.
Успехи медицинской микробиологии в области этиологии инфекционных болезней обусловили необходимость изучения механизмов защитных реакций организма от инфекционных агентов. Первым ученым, показавшим, что многие клетки организма (лейкоциты, селезенки, костного мозга и пр.) способны захватывать и переваривать чужеродные различные элементы, в том числе и бактерии, был И.И. Мечников (18451916). Такие клетки он назвал «фагоцитами» (от греч. фаго пожираю, цитоз клетка), а открытое явление «фагоцитозом».
В 1908 г. за это открытие ученый получил Нобелевскую премию. Так же И.И. Мечников много работал над вопросами продления жизни. Он считал, что человек должен жить 100 120 лет и что преждевременная старость «есть болезнь, которую надо лечить». Причину преждевременной старости Мечников видел в систематическом отравлении организма ядами гнилостных бактерий, которые населяют толстый кишечник человека. Поэтому он советовал употреблять пищу, содержащую мол очно-кислые бактерии. Именно они создают в кишечнике кислую среду, которая оказывает неблагоприятное воздействие на гнилостные микробы. Дважды И.И. Мечников подвергал себя смертельной опасности, чтобы проверить правильность своих предположений. Один раз он ввел в свой организм кровь больного тифом, чтобы проверить, как происходит заражение этой болезнью. Ученый перенес тяжелую форму возвратного тифа, но убедился, что заражение происходит через кровь. Второй раз он заразилсебя ослабленными микробами холеры, чтобы на себе проверить их действие.
В 1886 г. Мечников организовал в Одессе первую в стране бактериологическую станцию и создал школу микробиологов. Но его прогрессивные взгляды в научной и общественной жизни вызвали недовольство царского правительства и с 1887 г. до конца жизни он жил в Париже и работал в институте Пастера.
2. Роль м/о в развитии инф. Процесса
Проявления инфекции весьма разнообразны и зависят от свойств микроорганизмов, от состояния макроорганизма, от условий окружающей среды.
Инфекционный процесс может проявиться в форме инфекционной болезни. Если инфекционный процесс не дает видимых клинических проявлений болезни, то говорят о скрытой форме инфекции (бессимптомное течение инфекционного гепатита). Это приводит к состоянию носительства. При заражении большое значение имеет инфицирующая доза (ИД) эта доза выражает минимальное количество патогенных микроорганизмов, попавших в макроорганизм, при которой начинается заболевание. Например ИД для стафилококка 103, ИД для холерного вибриона 108~'°. ИД снижается при иммунодефицитах человека.
Инфекция, вызванная одним микробом, называется простой инфекцией, двумя или более видами смешанной. Повторное заражение одним и тем же возбудителем называется реинфекцией.
Инфекции делятся по форме на:
1) бактериальную, вирусную, грибковую, протозойную;
2) экзогенную, эндогенную;
3) местную (очаговую), общую (генерализованную): бактериемия и вирусемия, септицемия, сепсис;
4) моноинфекции, смешанные инфекции, реинфекции;
5) острую, хроническую, бактерионосительство;
6) бессимптомную или с выраженными клиническими проявлениями (манифестную);
7) антропонозы, зоонозы.
3. Менингококки
Впервые этот вид бактерий был открыт Вексельба-умом в 1887 г., хотя упоминания об эпидемиях менингита встречаются в трудах древнегреческих врачей.
Морфологические и культуральные свойства. Менингококки мелкие диплококки (0,70,8 мкм), в мазках напоминают кофейные зерна. Неподвижны, спор не образуют, грамотрицательные.
Менингококки хорошо растут на питательных средах с добавлением крови, молока или яичного желтка. В качестве источника углерода и азота менингококки используют аминокислоты аспарагин, глутамин, глицин, поэтому их включают в среду культивирования. Элективная среда должна содержать ристомицин. Повышенная концентрация углерода стимулирует рост менингококков.
Резистентность. Во внешней среде менингококк нестоек, быстро погибает при отклонении температуры от 37°С. При температуре 55°С менингококк погибает через 35 мин. Плохо переносит охлаждение. При низкой температуре теряет способность к образованию колоний. Бактерии также чувствительны к ультрафиолетовому облучению, к дезинфицирующим средствам. В 1 % растворе карболовой кислоты гибнет в течение 1 мин. Такое же действие оказывают 1 % раствор хлорамина, 70° спирт. Менингококки чувствительны к антибиотикам тетрациклинового ряда, эритромицину и др.
Эпидемиология. Основной источник менингококковой инфекции больной человек или бактерионоситель. Возбудитель передается воздушно-капельным путем. Входными воротами бактерий является носоглотка, где возбудитель может длительно существовать, не вызывая заболевания (носительство). Менингококки встречаются на слизистых оболочках носоглотки у 510% здорового населения. Для ме-нингококковой инфекции характерна цикличность заболеваемости. Отмечены подъемы заболеваемости каждые 1012 лет. Наиболее восприимчивы к этой инфекции дети до трех лет, а возраст носителей менингококка превышает 20 лет.
Патогенез поражений. Основным фактором патогенно-сти является капсула, которая защищает менингококки от клеток фагоцитов. Со слизистой носоглотки возбудитель распространяется дальше по лимфатическим и кровеносным сосудам. Поэтому основной путь распространения менингококка по организму гематогенный. Менингококковая бактериемия сопровождается массовой гибелью возбудителей и выделением эндотоксина (менингококкцемия). Как правило, менингит развивается на фоне вирусных инфекций (грипп, ОРВИ), а также при снижении защитных сил организма. По кровеносным сосудам возбудитель проникает в оболочки спинного и головного мозга и вызывает в них гнойное воспаление менингит.
Клинические проявления. Инкубационный период менингита 27 дней. Менингит начинается остро. Отмечаются высокая температура, рвота, судороги, очень сильная головная боль, при которой даже больно моргнуть или просто повернуть голову. Заболевание длится несколько недель. Иногда развивается менингококковый сепсис.
После перенесенного заболевания у человека вырабатывается очень стойкий, длительный иммунитет.
Неспецифическая профилактика этого заболевания сводится к соблюдению санитарно-противоэпидемического режима в местах большого скопления людей.




















Б5
1. Вклад ученых в развитие мед. м/б (Ценковскнй, Миих, Мочутковский, Мечников, Гамалея, Заболотпый, Габричевский, Циклипекая, Смородипцев, Пшеничное, Знльбер,Тимаков)
Большой вклад в развитие медицинской микробиологии внесли русские ученые. Вот их имена.
Ф. А. Леш (18401903) наблюдал в испражнениях больного дизентерией амебы.
П. Ф. Боровский (18631932) открыл возбудителя кожного лейкоманилеза.
С. Н. Виноградский (18561953) основатель сельскохозяйственной микробиологии. В 1890 г. открыл нитрифицирующие бактерии и изучил их значение в круговороте азота в природе.
Г. Н. Габричевский (18601907) основоположник московской микробиологической школы. Исследовал скарлатину, дифтерию и другие инфекции. Он организовал в Москве производство противодифтерийной сыворотки и лечил детей, больных дифтерией.
Г. Н. Минх (18361896) и О. О. Мочутковский (1845 1903) в опытах на себе установили заразность возвратного и сыпного тифа и пришли к заключению, что эти болезни передаются кровососущими насекомыми.
Среди советских ученых, внесших существенный вклад в развитие микробиологии, можно назвать следующие имена.
П. Ф. Здрадовский (18901976) автор классических трудов по изучению бруцеллеза и риккетсиоза создал и внедрил в практику ряд профилактических и лечебных препара-
тов. Занимался вопросами иммунологии малярии и кишечных заболеваний, вызванных простейшими.
М. И. Чумаков и А. А. Смородинцев ученые периода небывалого расцвета советской микробиологии (1950 1970 гг.). Ими и другими микробиологами внедряются вакцины из ослабленных возбудителей чумы, туляремии, бруцеллеза, разработана вакцина против полиомиелита.
Л. А. Зильбер микробиолог, эпидемиолог. Открыл переносчика и возбудителя весенне-летнего энцефалита. Им создана вирусогенетическая теория происхождения злокачественных опухолей.
З.В. Ермольева (18981975) изучала холеру и меры борьбы с ней. Она впервые в СССР получила пенициллин, который в годы Великой Отечественной войны спас тысячи жизней.
2. Роль макроорганизма, физической и социальной среды в развитии инфекционного процесса
Инфекционная болезнь характеризуется определенной продолжительностью и клиническими проявлениями. Течение и исход инфекционного процесса обусловлен количеством патогенных микроорганизмов, попавших в макроорганизм, состоянием организма человека, его восприимчивостью к микробу, факторами внешней среды (экологическими), где происходит взаимодействие микроба с хозяином.
3. Гонококки
Морфологические и культуральные свойства.
Гонококк был открыт в 1879 г. Нейссером. Это парнорасположенные кокки, напоминают кофейное зерно, неподвижны, образуют капсулу. Для гонококков характерен полиморфизм: встречаются мелкие и крупные клетки, а также палочковидные
формы. Хорошо красятся всеми анилиновыми красителями, грам~, но могут встречаться и грам+. Аэробы. Opt. pH 7,2 7,4, требователен к питательным средам. Для культивирования применяют сывороточный, асцитический и кровяной агары. На кровяном агаре гемолиза не дают. Гонококки разлагают глюкозу с образованием кислоты и декстрозу.
На плотных средах гонококки образуют мелкие колонии. На жидких средах растут диффузно с образованием пленки на поверхности.
Резистентность. Гонококки малоустойчивы во внешней среде. При 40°С погибают через 36 часов, при 56°С в течение 5 минут. Не переносят охлаждения. Поэтому посев следует проводить сразу после забора материала от больного. Высокочувствителен к пенициллину. В процессе лечения быстро приобретает устойчивость к антибиотикам различных групп.
Эпидемиология. Гонореей болеет только человек. Животные невосприимчивы к этой инфекции, в отличие от человека. Единственный источник инфекции больной человек. Основной путь передачи половой, возможно инфицирование плода при прохождении через родовые пути матери. Таким путем гонококки могут попасть в конъюнкти-вальный мешок глаза новорожденного и вызвать там воспаление (бленнорея). Возможно также заражение гонококком через кровь, взятой у инфицированных лиц на раннем этапе заболевания (что случается крайне редко).
У человека гонококк колонизируется на эпителии мочеиспускательного канала, прямой кишки, конъюнктивы, шейки матки, маточной трубы и яичника. Гонококковая инфекция часто проявляется воспалением тазовых органов и бесплодием у женщин.
Патогенез поражений. Гонококк попадает на слизистые мочеполовых путей, там усиленно размножается и проникает в подслизистую соединительную ткань. Хотя надо отметить, что попадание гонококков в организм не всегда приводит к развитию заболевания. В этом случае большое значение имеет вирулентность возбудителя, инфекционная доза,
место проникновения и состояние иммунного статуса организма. Гонококки фагоцитируются лейкоцитами, размножаются в них и не перевариваются (незавершенный фагоцитоз).
Клинические проявления. Инкубационный период гонореи 23 дня. Гонорея проявляется болями при мочеиспускании, выделением гноя из уретры. Чаще всего у женщин заболевание протекает бессимптомно, что делает женщин основными носителями инфекции. У мужчин бессимптомное течение гонореи практически не наблюдается.
При бленнорее новорожденных возникает гнойное воспаление глаз.
После перенесенного заболевания у человека остается непродолжительный, кратковременный иммунитет.
Профилактика гонореи сводится к санитарно-просвети-тельной работе среди населения и своевременному выявлению больных. Специфическая профилактика не проводится.

Билет 6

1. Значения открытий Ивановского, этапы развития вирусологии. Роль отечеств. Ученых (Зильбер, Смородиицев, Чумаков, Жданов и др)
В этом же году проводил исследования по изучению мозаичной болезни табака Д.И. Ивановский (18641920). Он пришел к выводу, что эту болезнь вызывает агент, который не растет на питательных средах и проходит через фильтры. Это была первая работа, доказавшая вирусную природу инфекционных болезней.
Большой вклад в развитие медицинской микробиологии внесли русские ученые. Вот их имена.
Ф. А. Леш (18401903) наблюдал в испражнениях больного дизентерией амебы.
П. Ф. Боровский (18631932) открыл возбудителя кожного лейкоманилеза.
С. Н. Виноградский (18561953) основатель сельскохозяйственной микробиологии. В 1890 г. открыл нитрифицирующие бактерии и изучил их значение в круговороте азота в природе.
Г. Н. Габричевский (18601907) основоположник московской микробиологической школы. Исследовал скарлатину, дифтерию и другие инфекции. Он организовал в Москве производство противодифтерийной сыворотки и лечил детей, больных дифтерией.
Г. Н. Минх (18361896) и О. О. Мочутковский (1845 1903) в опытах на себе установили заразность возвратного и сыпного тифа и пришли к заключению, что эти болезни передаются кровососущими насекомыми.
Среди советских ученых, внесших существенный вклад в развитие микробиологии, можно назвать следующие имена.
П. Ф. Здрадовский (18901976) автор классических трудов по изучению бруцеллеза и риккетсиоза создал и внедрил в практику ряд профилактических и лечебных препара-
тов. Занимался вопросами иммунологии малярии и кишечных заболеваний, вызванных простейшими.
М. И. Чумаков и А. А. Смородинцев ученые периода небывалого расцвета советской микробиологии (1950 1970 гг.). Ими и другими микробиологами внедряются вакцины из ослабленных возбудителей чумы, туляремии, бруцеллеза, разработана вакцина против полиомиелита.
Л. А. Зильбер микробиолог, эпидемиолог. Открыл переносчика и возбудителя весенне-летнего энцефалита. Им создана вирусогенетическая теория происхождения злокачественных опухолей.
З.В. Ермольева (18981975) изучала холеру и меры борьбы с ней. Она впервые в СССР получила пенициллин, который в годы Великой Отечественной войны спас тысячи жизней.
2. Основные факторы патогенпости бактерий, их хар-ка
Чтобы вызвать заболевание, микроорганизмы должны быть патогенными (болезнетворными). Патогенность микроорганизмов это генетически обусловленный признак, который передается по наследству. Для того чтобы вызвать инфекционную болезнь, патогенные микробы должны проникать в организм в определенной инфицирующей дозе (ИД). В естественных условиях для возникновения инфекции патогенные микробы должны проникать через определенные ткани и органы организма. Патогенность микробов зависит от многих факторов и подвержена большим колебаниям в различных условиях. Патогенность микроорганизмов может снижаться или, наоборот, увеличиваться. Степень патоген-ности или болезнетворности микроорганизмов называется «вирулентностью». У патогенных микроорганизмов вирулентность обусловлена:
1) адгезией это способность микроорганизмов прикрепляться к органам и тканям хозяина.
За адгезию отвечают пили и другие рецепторы у стафилококков белок А, у стрептококков белок М. Эти структуры, ответственные за прилипание к клеткам хозяина, называются «адгезинами». При отсутствии адгезинов инфекционный процесс не развивается;
2) инвазией это способность внедряться во внутреннюю среду организма хозяина и распространяться по его органам и тканям. Микроорганизмы способны вырабатывать различные ферменты агрессии, для преодоления защитных барьеров макроорганизма. К ним относятся: нейраминидаза фермент, который расщепляет биополимеры, которые входят в состав поверхностных рецепторов клеток слизистых оболочек. Это делает оболочки доступными для воздействия на них микроорганизмов; гиалуронидаза действует на межклеточное и межтканевое пространство. Это способствует
проникновению микробов в ткани организма; дезоксирибо-нуклеаза (ДНКаза) фермент, который деполимеризирует ДНК, и др. Ферменты микроорганизмов могут действовать местно и генерализованно. Большую роль в преодолении межклеточных барьеров играют жгутики бактерий;
3) капсулообразованием это способность микроорганизмов образовывать на поверхности капсулу, которая защищает бактерии от клеток фагоцитов организма хозяина (пневмококки, чума, стрептококки). Если капсул нет, то образуются другие структуры: например, у стафилококка белок А, с помощью этого белка стафилококк взаимодействует с иммуноглобулинами. Такие комплексы препятствуют фагоцитозу. Или же микроорганизмы вырабатывают определенные ферменты: например, плазмокоагулаза приводит к свертыванию белка, который окружает микроорганизм и защищает его от фагоцитоза;
4) токсинообразованием способность микроорганизмов вырабатывать яды. По своим свойствам токсины делятся на эндотоксины и экзотоксины.
Экзотоксины это вещества белковой природы, обладают выраженными иммуногенными и антигенными свойствами. Они состоят из двух фрагментов А и В. В-фрагмент способствует адгезии и инвазии; А-фрагмент обладает выраженной активностью по отношению к внутренним системам клетки.
По типу действия экзотоксины делятся на:
А. Цитотоксины блокируют синтез белка в клетке (дифтерия, шигеллы);
Б. Мембранотоксины действуют на мембраны клеток (лейкоцидин стафилококка действует на мембраны клеток фагоцитов или стрептококковый гемолизин действует на мембрану эритроцитов). Наиболее сильные эзотоксины вырабатывают возбудители столбняка дифтерии, ботулизма. Характерной особенностью экзотоксинов является их способность избирательно поражать определенные органы и ткани организма. Например, экзотоксин столбняка поражает двигательные нейроны спинного мозга, а дифтерий-
ный экзотоксин поражает сердечную мышцу и надпочечники.
Для профилактики и лечения токсинемических инфекций применяются анатоксины (обезвреженные экзотоксины микроорганизмов) и антитоксические сыворотки.
Эндотоксины тесно связаны с телом микробной клетки и освобождаются при ее разрушении. Эндотоксины не обладают таким выраженным специфическим действием, как экзотоксины, а также менее ядовиты. Не переходят в анатоксины. Эндотоксины являются суперантигенами, они могут активизировать фагоцитоз, аллергические реакции. Эти токсины вызывают общее недомогание организма, их действие не отличается специфичностью. Независимо от того, от какого микроба получен эндотоксин, клиническая картина однотипна: это, как правило, лихорадка и тяжелое общее состояние. Выброс эндотоксинов в организм может привести к развитию инфекцион-но-токсического шока.
3. Сальмонеллы возбудители брюшного тифа и паратифов А и В
Род сальмонелл включает 65 групп 2000 сероваров. Бактерии названы в честь Дэвида Сэльмона. По IX изданию определителя бактерий Берджи (1994 г.) в род сальмонелл включено 2 вида: S. bongori и S. choleraesuis, которые объединяют 5 подвидов choleraesuis (I), salamae (2), arizonae (За), diarizonae (3b), houtenae (4) и indica (5).
Морфологические и культуральные свойства. Сальмонеллы короткие палочки с закругленными концами. Под-
Схема выделения возбудителя дизентерии
Испражнения, слизь,
гной, промывные воды
кишечника, рвотные
массы, секционный
материал и др.
Бактериологический метод
Среды Плоскирева, Левина и др.
Чистая культура
Ферментативные свойства (СИБ)
Антибиоти кограмма
Серологическое тестирование РА на стекле
Серологический метод
Сыворотка крови
РИГА, РА, определение IgG и fg
вижные, так как имеют жгутики. Спор и капсул не образуют, грам". В мазках располагаются беспорядочно. Факультативные анаэробы, ph среды 5,08,0. На МПА сальмонелла тифа образует полупрозрачные нежные колонии, на средах Эндо и Плоскирева сальмонеллы тифа образуют полупрозрачные, бесцветные или бледнорозовые колонии, на висмутсульфитном агаре черные блестящие колонии. Сальмонеллы паратифа А на питательных средах образуют колонии, сходные с колониями S. typhi.
Колонии сальмонелл паратифа В более грубые. По пере-ферии колоний возникают слизистые валики, что является характерным дифференциальным признаком. Эпидемиология. Сальмонеллы вызывают заболевания человека и животных. К этому роду относятся возбудители брюшного тифа и паратифов А и В. Брюшной тиф и паратиф А это антропонозные инфекции, источником инфекции являются больные или бактерионосители. Источником паратифа В могут быть также сельскохозяйственные животные. Основные пути передачи водный и пищевой, реже -контактный. Брюшной тиф и паратифы А и В регистрируются в разных странах, а также повсеместно на территории России. Чаще болеют люди старше 15 лет, но встречается заболевание и у маленьких детей. Наибольшая заболеваемость отмечается в летне-осенний период. Резистентность. Сальмонеллы устойчивы во внешней среде. В пыли, во льду, в воде могут сохраняться до 3 месяцев. Низкие температуры переносят хорошо. В мороженых овощах могут сохраняться до 2 месяцев. Наиболее устойчива S. typhimurium (возбудитель тифа мышей, которая на различных предметах остается жизнеспособной до года). К дезинфектантам сальмонеллы чувствительны. Осветленный 0,3% раствор хлорной извести убивает сальмонеллы через 1 час. Хлорирование сточных вод снижает их загрязненность сальмонеллами в несколько раз. При кипячении возбудители гибнут сразу. Антигенная структура. Сальмонеллы брюшного тифа имеют О-, Н- и Vi-антигены. Каждый вид сальмонелл обладает определенным набором антигенов. О-антигены термостабильны, выдерживают длительное кипячение и автоклавирование при 120° С в течение 30 мин. Чувствительны к действию формалина, но устойчивы к разведенным кислотам. В соответствии с набором тех или иных О-антигенов сальмонеллы подразделяются на серологические группы (их насчитывают 65). Vi-антиген находится на поверхности бактериальной клетки. Этот антиген препятствует агглютинации сальмонелл О-сыворотками, утрата Vi-антигена сопровождается восстановлением О-агглютинабельности. Брюшнотифозные сальмонеллы, содержащие Vi-антиген, не агглютинируются О-сыворотками. Термолабилен. Чувствителен к НС1. Н-антигены термолабильны, разрушаются при нагревании до 100°С и при действии соляной кислоты. Антигенная структура сальмонелл может меняться и переходить из S- в R-форму в результате мутаций. Патогенез заболевания. Первичным местом локализации возбудителей является пищеварительный тракт. После того, как микробы попадают в тонкий кишечник, они проникают в его лимфатический аппарат и там усиленно размножаются. Оттуда возбудители брюшного тифа попадают в кровь наступает бактериемия, при которой происходит гематогенный занос возбудителя в селезенку, костный мозг. Особенно много сальмонелл накапливается в печени. При гибели бактерий освобождается эндотоксин, который вызывает явление интоксикации (головная боль, бессонница, расстройство деятельности сердечно-сосудистой системы). Из печени микробы попадают в желчный пузырь, а оттуда вместе с желчью опять в тонкий кишечник. Таким образом сальмонеллы могут циркулировать по организму несколько лет (бактерионосительство). Сальмонеллы выводятся из организма с мочой и калом. Клинические проявления. Брюшной тиф и паратифы клинически эти заболевания не различимы. Инкубационный период от 10 до 14 дней. Это острые кишечные инфекции, сопровождающиеся бактеримией, лихорадкой и явлениями общей интоксикации: повышение температуры, нарастание утомляемости и слабости, снижение аппетита, бессонница. Для брюшного тифа характерно помутнение сознания, галлюцинации, бред. Тяжелыми осложнениями могут быть кишечное кровотечение, перитонит, прободение стенки кишки, инфекционно-токсический шок. Для брюшнотифозных больных характерна сухость языка, который обычно обложен серовато-бурым налетом. В период разгара болезни все симптомы интоксикации усиливаются. Заболевание паратифом А протекает менее тяжело. Паратиф А начинается остро: у больного отмечается тошнота, рвота, частый жидкий стул. Возможны гиперемия лица и герпетические высыпания. Паратиф В протекает по-разному: от стертых до тяжелых форм с симптомами менингита. Кишечные расстройства похожи на сальмонеллезные гастроэнтериты. При диагностике этих заболеваний решающее значение принадлежит лабораторным исследованиям. После перенесения брюшного тифа и паратифов у человека вырабатывается стойкий иммунитет, но иногда бывают рецидивы и повторные заболевания. Гастроэнтериты (сальмонвллезы) группа инфекционных заболеваний у человека и животных. Инкубационный период от нескольких часов до 3 суток. В начале заболевания поднимается температура, появляются озноб, рвота, частый водянистый жидкий стул, боли в животе. При явлениях общей интоксикации у больных появляется общая слабость, головная боль. Для того чтобы подтвердить диагноз, обязательна лабораторная диагностика, при которой проводится идентификация сальмонелл. Профилактика сальмонеллезных инфекций заключается в проведении санитарно-гигиенических, ветеринарно-сани-тарных и противоэпидемических мероприятий. В районах с неблагополучной эпидемиологической обстановкой проводится вакцинация. Для иммунопрофилактики брюшного тифа используют 2 типа вакцин убитые (эффективность 50%) и живая аттенуированная (из штамма Ту 21 а). Для экстренной профилактики и для терапии у грудных детей используют брюшнотифозный бактериофаг.















































































Билет 7
1. Систематика и номенклатура м/о. понятие о виде, штамме, клопе, чистой и смешанной культуре. Определитель бактерий Берджи.
С 1 января 1980 г. для микроорганизмов принята Единая международная классификация, в основе которой лежит система Берги.
Основными ступенями всех классификаций являются: царство класс порядок семейство род вид. Главной классификационной категорией является вид совокупность организмов, имеющих общее происхождение, сходные морфологические, физиологические признаки и обмен веществ.
Мир микроорганизмов делится на 2 группы: эукариоты и прокариоты. Бактерии относятся к царству прокариотов, представители которых, в отличие от эукариотов, не обладают оформленным ядром. Наследственная информация у прокариотов заключена в молекуле ДНК, располагающейся в цитоплазме клетки.
Внутри вида существуют варианты: морфоварианты, или морфовары, отличающиеся по морфологии; биовары по биологическим свойствам, хемовары по ферментативной активности, серовары по антигенной структуре, фагова-ры по чувствительности к фагам.
Для обозначения микроорганизмов принята общебиологическая бинарная (двойная) номенклатура. Первое название обозначает род и пишется с прописной буквы. Второе название обозначает вид и пишется со строчной буквы. Например, Staphylococcus aureus стафилококк золотистый, S. aureus.
СистематикаКлассификация служит для распределения всех микроорганизмов, образующих определенную степень по однородности. Систематика – наука, изучающая многообразий организмов, выявление их сходств, различий и обобщение в группы. Таксономия – раздел систематологии, основанный на принципа их классификации, морфологических, биохимический и физиологических свойств организма. Классификация – распределение единиц более высокого порядка.Первая классификация микроорганизмов («Руководство по систематике бактерий») вышла в 1923 году под редакцией Берги, а в России – подредакцией профессора Красильникова.
царство: прокариоты отдел: цианобактерии бактерии (19 групп)класс порядок семейство трибы род вид биотип фототип серотип Таксон – группа организмов, объединенных по однородным признакам врамках 1 таксономической категории.Вид – основной таксон – эволюционно сложившаяся совокупность микроорганизмов, имеющая одинаковое происхождение, сходные построению и функциональным признакам. Клон – генетически однородная чистая культура микроорганизмов, образующихся из одной клетки. Штамм – культура определенного вида микроорганизмов, выделенная из одного или различных источников в одно или в разное время. Штамм[название]. Холерный вибрион штамм водный 1972 года (обнаружен вводе) или холерный вибрион штамм Иванова (обнаружена у пациента Иванова).Вары (типы) – это варианты или типы микроорганизмов одного вида, отличающихся отдельными признаками от стандартных видов. Например, морфовары – морфологические, биовары – биологические, ферментовары– ферментативные, резистенсвары – резистентные к антибиотикам, фаговары – резистентные к макрофагам.Чистая культура – популяция микроорганизмов, состоящая из особейодного вида.
Смешанная культура - популяция микроорганизмов, состоящая изособей разного вида.
Номенклатура Основы номенклатуры были заложены Карлом Линнеем. С 1980 годавведен новый Международный кодекс номенклатуры бактерии. Онпредложил бинарная номенклатуру:[родовое название] + [видовое название]Родовое название связано с морфологическими особенностями илифамилией автора, а видовое название связано с источником выделения микроба или названием болезни. Staphylococcus aureus – золотистый (по цвету колоний – золотисто-желтого цвета) стафилококк (шарики в виде гроздьев винограда) Streptococcus piogenus – гнойный стрептококк (цепочки) Vibrion cholerae – холерный вибрион (изогнутый по форме) Escherichia coli – кишечная палочка (по названию автора)Объекты изучения Объекты изучения: эукариоты, прокариоты, вирусы. Эукариоты: грибы, все растительные и животные клетки. Прокариоты: бактерии, спирохеты, риккетсии, хламидии, микоплазмы
2. Динамика развития (периоды) инфекционной болезни
Инфекционная болезнь характеризуется определенной продолжительностью и клиническими проявлениями. Течение и исход инфекционного процесса обусловлен количеством патогенных микроорганизмов, попавших в макроорганизм, состоянием организма человека, его восприимчивостью к микробу, факторами внешней среды (экологическими), где происходит взаимодействие микроба с хозяином. В развитии инфекционного процесса можно выделить несколько периодов:
1. Инкубационный период это время, прошедшее с момента попадания микроорганизма в макроорганизм до появления первых клинических признаков заболевания. Этот период может быть различным по продолжительности и зависит в основном от вида возбудителя. Например, при кишечных инфекциях инкубационный период не длительный от нескольких часов до нескольких суток. При других инфекциях (грипп, ветряная оспа, коклюш) от нескольких недель до нескольких месяцев. Но есть и такие инфекции, при которых инкубационный период длится несколько лет: лепра, ВИЧ-инфекция, туберкулез. В этом периоде происходит адгезия клеток и, как правило, возбудители не выявляются. 2. Продромальный период в этот период идет колонизация возбудителя на чувствительных клетках организма. В этот период появляются первые предшественники за-
болевания (повышается температура, снижаются аппетит и работоспособность и др.), микроорганизмы образуют ферменты и токсины, которые приводят к местным и генерализованным воздействиям на организм. При таких заболеваниях, как брюшной тиф, оспа, корь, продромальный период очень характерен и тогда уже в этом периоде врач может поставить предварительный диагноз. В этом периоде, как правило, возбудитель не выявляется, кроме коклюша и кори.
3. Период развития заболевания в этот период идет интенсивное размножение возбудителя, проявление всех его свойств, максимально проявляются клинические проявления, характерные для данного возбудителя (пожелтение кожных покровов при гепатите, появление характерной сыпи при краснухе и т. д.). В этот период формируется защитная реакция макроорганизма в ответ на патогенное действие возбудителя, продолжительность этого периода также бывает различной и зависит от вида возбудителя. Например, туберкулез, бруцеллез текут долго, несколько лет их называют хроническими инфекциями. При большинстве инфекций этот период является самым заразным. В разгар заболевания больной человек выделяет в окружающую среду очень много микробов. Период клинических проявлений заканчивается выздоровлением или смертью больного. Летальный исход может наступить при таких инфекциях, как менингит, грипп, чума и др. Степень выраженности клинического течения заболевания может быть разной. Болезнь может протекать в тяжелой или легкой форме. А иногда клиническая картина может быть вообще нетипичной для данной инфекции. Такие формы заболевания называют атипичными, или стертыми. Поставить диагноз в таком случае трудно и тогда используются микробиологические методы исследования.
4. Период выздоровления (реконвалесценция) в этот период погибают возбудители, нарастают иммуноглобулины класса G и А. В этот период может развиться бактерионосительство: в организме могут сохраняться антигены, которые длительно будут циркулировать по организму. Период выздоровления сопровождается снижением температуры, восстановлением работоспособности, повышением аппетита. В этот период из организма больного выводятся микробы (с мочой, испражнениями, мокротой). Продолжительность периода выделения микробов неодинакова при различных инфекциях. Например, при ветрянке, сибирской язве больные освобождаются от возбудителя при исчезновении клинических проявлений болезни. При других болезнях этот период продолжается 23 недели.
Инфекционный процесс не всегда проходит все стадии и может заканчиваться на ранних этапах заболевания. Например, если человек привит от того или иного заболевания, то периода развития заболевания может и не быть. В любом периоде инфекционной болезни, но особенно в период ее разгара, возможны осложнения: специфические и неспецифические.
Специфические это осложнения, вызванные возбудителем данного заболевания и являющиеся следствием необычной выраженности функционально-морфологических изменений в организме больного (например, увеличение миндалин при стафилококковой ангине или перфорация язв кишечника при брюшном тифе). Неспецифические это осложнения, вызванные микроорганизмами другого вида, как правило, условно-патогенными, являющимися неспецифическими для данного заболевания (например, развитие гнойного среднего отита у больного корью).
3. Шигеллы возбудители бактериальной дизентерии
Согласно международной классификации род шигелл включает 4 вида (подгруппы):
A.S. dysenteriae 10 сероваров;
B. S. flexneri 13 сероваров;
C. S. boydii 15 сероваров;
D. S. sonnei серологически однороден.
Термин «дизентерия» как клиническое понятие существует с древних времен. Название болезни дано Гиппократом в V в. до н. э. До начала XIX в. под этим понятием объединялись все болезни, сопровождающиеся диареями.
Морфологические и культуральные свойства. Впервые шигеллы были выделены в 1919 г. Кастеллани и Чалмерсом, а род назван в честь Киеси Шйга, который описал его типовой вид.
Шигеллы мелкие палочки (23 мкм) с закругленными концами. В мазках располагаются беспорядочно. Грам^. Спор не образуют, некоторые штаммы обладают нежной
капсулой. Жгутиков не имеют неподвижны. Факультативные анаэробы, температурный opt 37°C, рН 6,8 7,2. На плотных средах образует полупрозрачные гладкие и шероховатые колонии. На простых средах растут хорошо, хотя для культивирования чаще используют среды обогащения.
Резистентность. Возбудители бактериальной дизентерии сохраняются в воде, почве, на различных предметах в течение 1015 суток. Температура 60°С убивает бактерии в течение 1020 минут. Под действием 1% раствора лизола, хлорамина шигеллы погибают через 30 мин. Это говорит о некоторой устойчивости возбудителей дизентерии к действию дезинфектантов.
Эпидемиология. Единственным источником инфекции является больной человек и бактерионоситель. Механизм заражения фекально-оральный. Пути передачи могут быть разными, в зависимости от вида возбудителя, а именно: пищевой, водный или контактно-бытовой. Дизентерия распространена повсеместно, хотя в различных уголках планеты циркулируют разные виды дизентерии. Например, в Индии циркулирует S. boydii, в США отмечают рост заболеваемости, вызванной S. flexneri, в России S. sonnei. Чаще всего дизентерия развивается у лиц со сниженным иммунитетом. Дизентерию регистрируют в течение всего года, но чаще в теплый сезон: июньсентябрь.
Патогенез поражений. Возбудители дизентерии через рот попадают в ЖКТ, достигают толстой кишки и там проникают в клетки слизистой оболочки.
Усиленно размножаются в них и инфицируют соседние клетки, благодаря инвазивному фактору. Размножение шигелл в эпителиальных клетках вызывает механическое повреждение эпителия, что приводит к развитию дефектов слизистой оболочки и воспалительной реакции подслизистой с выходом элементов крови в просвет кишки. Эндотоксин, который освобождается при разрушении бактерий, вызывает общую интоксикацию организма, усиление перистальтики кишечника, понос. Кровь из просвета кишки попадает в
кал. Под действием экзотоксина наблюдаются нарушение водно-солевого обмена, со стороны нервной системы.
Клинические проявления. Инкубационный период дизентерии от 2 до 7 дней. Заболевание может протекать бессимптомно или, наоборот, очень тяжело: с высокой температурой (3839°С), лихорадкой, ознобом, болями в животе, поносом. При острой форме дизентерии у человека бывает от 10 до 25 актов дефекации в сутки в начальной стадии заболевания. Затем количество дефекаций уменьшается и стул приобретает вид тертого картофеля. Он состоит из слизи и крови, а в более поздний период наблюдаются примеси гноя. Наиболее тяжелое течение наблюдают при дизентерии ГригорьеваШига. Иногда болезнь может переходить в хроническую форму. Летальность при дизентерии низкая и составляет 1 %.
У человека имеется естественный иммунитет к дизентерийной инфекции, поэтому заражение не всегда приводит к заболеванию.
После перенесенного заболевания остается кратковременный, непродолжительный иммунитет.
Для экстренной профилактики дизентерии в очагах эпидемических вспышек используется дизентерийный бактериофаг, который также применяют для терапии начальной стадии заболевания у грудных детей. К профилактическим мероприятиям относится выполнение санитарно-гигиенических правил и соблюдение личной гигиены.





























Билет 8

1. Принципы организации, оборудование, режим работы в микробиологической лаборатории.
2. Бактериальные токсины: классификация, хим. Природа, строение, свойства
Патогенные представители вырабатывают ядовитые для человека и животных вещества токсины, которые делятся на 2 группы:
1. Экзотоксин белки, которые клетка выделяет во внешнюю среду, обладает выраженными иммуногенными и антигенными свойствами. Часто они состоят из двух фрагментов А и В. В-фрагмент способствует адгезии, инвазиии. А обладает выраженной активностью по отношению к внутренним системам клетки.
2. Эндоксин тесно связан с телом микробной клетки, так как локализуется в липополисахаридном слое клеточной стенки. Действие эндоксинов на организм не отличается специфичностью. Эндоксины освобождаются при разрушении микробной клетки.
токсинообразованием способность микроорганизмов вырабатывать яды. По своим свойствам токсины делятся на эндотоксины и экзотоксины.
Экзотоксины это вещества белковой природы, обладают выраженными иммуногенными и антигенными свойствами. Они состоят из двух фрагментов А и В. В-фрагмент способствует адгезии и инвазии; А-фрагмент обладает выраженной активностью по отношению к внутренним системам клетки.
По типу действия экзотоксины делятся на:
А. Цитотоксины блокируют синтез белка в клетке (дифтерия, шигеллы);
Б. Мембранотоксины действуют на мембраны клеток (лейкоцидин стафилококка действует на мембраны клеток фагоцитов или стрептококковый гемолизин действует на мембрану эритроцитов). Наиболее сильные эзотоксины вырабатывают возбудители столбняка дифтерии, ботулизма. Характерной особенностью экзотоксинов является их способность избирательно поражать определенные органы и ткани организма. Например, экзотоксин столбняка поражает двигательные нейроны спинного мозга, а дифтерий-
ный экзотоксин поражает сердечную мышцу и надпочечники.
Для профилактики и лечения токсинемических инфекций применяются анатоксины (обезвреженные экзотоксины микроорганизмов) и антитоксические сыворотки.
Эндотоксины тесно связаны с телом микробной клетки и освобождаются при ее разрушении. Эндотоксины не обладают таким выраженным специфическим действием, как экзотоксины, а также менее ядовиты. Не переходят в анатоксины. Эндотоксины являются суперантигенами, они могут активизировать фагоцитоз, аллергические реакции. Эти токсины вызывают общее недомогание организма, их действие не отличается специфичностью. Независимо от того, от какого микроба получен эндотоксин, клиническая картина однотипна: это, как правило, лихорадка и тяжелое общее состояние. Выброс эндотоксинов в организм может привести к развитию инфекцион-но-токсического шока.
3. Эшерихии, их роль в этиологии кишечных инфекций ( ЭПКП, ЭТКП, ЭИКП, ЭГКП)
Впервые этерихии были выделены в 1885 г. Этерихом. Встречается очень много разновидностей кишечных палочек,
которые являются нормальными обитателями кишечника человека.
Типовой вид рода Escherichia Е. coli (кишечная палочка), вызывающая при снижении иммунитета гнойно-воспалительные заболевания у человека.
Морфологические и культуральные свойства:
Е. coli небольшие (0,51 мкм) палочки, спор не образуют, грам~. Некоторые штаммы образуют капсулу. Имеют жгутики, которые расположены по всей поверхности клетки (перитрих). Факультативный анаэроб, температурный opt 37°С, рН 7,27,8. Е. coli к питательным средам не требовательна и хорошо растет на простых средах. На твердых средах образует слегка выпуклые колонии, мутные, слегка желтоватые.
Е. coli обладает большим набором различных ферментов. Наиболее важным отличительным признаком Е. coli от других представителей семейства является ее способность ферментировать в течение 24 часов лактозу.
Резистентность. Е. coli хорошо сохраняется во внешней среде. При температуре 60°С погибает в течение 15 мин; 1 % раствор лизола или 5 % раствор хлорамина убивает через 1015 мин. В отличие от других энтеробактерий, Е. coli более устойчива к действию различных факторов.
Эпидемиология. Как сапрофиты Е. coli обитают в толстом кишечнике и играют положительную роль: принимают участие в синтезе витаминов группы В; являются антагонистом многих гнилостных бактерий; частично расщепляют клетчатку. В толстом кишечнике обитают Е. coli серогрупп 02, 07, 09. Но при снижении иммунитета Е. coli может вызывать различные воспалительные заболевания этерихи-озы. Источником этерихиозов являются больные люди, реже животные. Механизм заражения фекально-оральный, пути передачи пищевой, контактно-бытовой. Чаще всего заболевание носит характер вспышек.
Антигенная структура Е. coli имеет О-соматический, Н-жгутиковый и К-капсульный антигены. Каждый из этих антигенов имеет несколько вариантов: О-антиген 170 ва-
риантов, К-антиген более 100, Н-антиген более 50. Строение О-антигена определяет принадлежность к серогруппе. Штаммы Е. coli, имеющие присущий им набор антигенов, называются серологическими вариантами (серовары).
По своим токсигенным свойствам различают два варианта Е. coli: 1) условно-патогенные и 2) патогенные штаммы.
Патогенез поражений. Основными факторами патоген-ности являются облегчающие адгезию к эпителию и способствующие колонизации нижних отделов тонкой кишки. Е. coli вырабатывает термолабильный и термостабильный эн-теротоксины. Эффект термолабильного токсина аналогичен действию токсина холерного вибриона. Он усиливает пери-стальнику кишечника, вызывает диарею, повышение температуры тела, рвоту и нарушение водно-солевого обмена.
Клинические проявления этерихиозов
1. Кишечные инфекции. Инкубационный период 2 3 дня. Болезнь начинается остро, с повышения температуры тела, болей в животе, поноса, рвоты. Отмечаются нарушения сна, головная боль. Холероподобные этерихиозы сопровождаются обезвоживанием организма.
2. Инфекции мочевыводящих путей сопровождаются бессимптомной бактериурией, циститами и острыми пиелонефритами. Клинически это проявляется дизурией, частыми позывами на мочеиспускание, болями в нижней части живота, лихорадкой, реже тошнотой и рвотой. Обычно эти поражения происходят из микрофлоры кишечника. Бактерии проникают в уретру, затем в мочевой пузырь, прикрепляются к поверхности эпителия и активно размножаются. Развитие этих поражений зависит от возраста и пола.
3. Бактериемия. Е. coli составляет одну из основных причин бактериемии у детей и взрослых (2035%). Основные возбудители серогрупп 02, 04, 06, 07, 016, 018. Факторы риска преждевременные роды, преждевременные разрывы плодного пузыря, родовые травмы. У взрослых лиц первичными источниками бактериемии являются мочевыводя-
щие пути и кишечник. Клинически бактериемии, вызванные Е. coli, не имеют особых признаков. У новорожденных это нарушение терморегуляции, рвота, диарея, желтуха, сонливость. У взрослых лихорадка, спутанность сознания, судороги, снижение артериального давления.
4. Менингит. У новорожденных Е. coli способна вызывать менингит. В большинстве случаев это заболевание развивается как осложнение при бактериемии. Основные клинические проявления рвота, диарея, желтуха, лихорадка, сонливость. Летальность заболевания у новорожденных весьма высокая. У выживших детей часто сохраняются остаточные неврагические расстройства.
После перенесенных заболеваний, вызванных Е. coli, остается непродолжительный иммунитет. Профилактика сводится к соблюдению правил личной гигиены, проводятся санитарно-гигиенические мероприятия. Специфическую профилактику не проводят.





































































Билет 9

Биотехнология, генная инженерия, значение для медицины
Дальнейшее развитие микробиологии тесно связано с успехами молекулярной биологии и генетики. Эти разделы поднимают науку на более высокий и современный уровень. Расшифровка основных принципов кодирования генетической информации в ДНК бактерий, а также универсальность генетического кода бактерий и вирусов позволили установить общие молекулярно-генетические закономерности, свойственные высшим организмам.
К настоящему времени генная инженерия внесла новые идеи и методы в производство широкого спектра биологически активных веществ. В начале XXI в. микробиология составляет одно из основных направлений медицины, открывая новые горизонты для различных ее дисциплин.
2. Формы инфекции и их хар-ка (экзо-,эндо-; очаговая, генерализованная; моно-, смешанная; острая, хроническая, носительство, вторичная реинфекция, суперинфекция, рецидив, аутоинфекция, перспстенция)
Инфекция, вызванная одним микробом, называется простой инфекцией, двумя или более видами смешанной. Повторное заражение одним и тем же возбудителем называется реинфекцией.
Инфекции делятся по форме на:
1) бактериальную, вирусную, грибковую, протозойную;
2) экзогенную, эндогенную;
3) местную (очаговую), общую (генерализованную): бактериемия и вирусемия, септицемия, сепсис;
4) моноинфекции, смешанные инфекции, реинфекции;
5) острую, хроническую, бактерионосительство;
6) бессимптомную или с выраженными клиническими проявлениями (манифестную);
7) антропонозы, зоонозы.
3. Протей
Типовой вид P. vulgaris.
Протей впервые был выделен Хаузером в 1885 г. Это грамм" палочки. В мазках располагаются парно или цепочками, спор и капсул не образуют, подвижны. Капсул не имеют, факультативные анаэробы. Хорошо растет на обычных питательных средах. На МПА образует два вида колоний: в Н-форме колонии имеют вид «роения». Это типичная форма роста (сплошной рост), которая сопровождается неприятным гнилостным запахом. При неблагоприятных условиях (наличие в среде фенола, желчных солей) образует О-формы колоний, с ровными краями. Пигментов не образуют. При росте на жидких средах дают равномерное помутнение.
Антигенная структура. У протеев выделяют О-, Н- и К-антигены. Соматический О-антиген термостабилен, Н-ан-тиген термолабилен. Род Proteus состоит из 5 видов, Pr. vulgaris, Pr. mirabilis, Pr. morgani (66 сероваров), Pr. rettgeri (45 сероваров), Pr. inconstans (156 сероваров). Некоторые из них относят к патогенным бактериям, хотя протей считается условно-патогенным микроорганизмом.
Резистентность. Во внешней среде протеи довольно устойчивы. При 60°С сохраняются около часа. Низкие температуры переносят хорошо. Устойчивы к действию дезраство-ров.
Патогенез поражений. Важным фактором патогенности протея является способность к образованию уреазы. Бактерии разлагают мочевину в качестве источника энергии, конечные продукты метаболизма (хлорид аммония) вызывают местное воспаление и способствуют образованию камней и застою мочи.
«Роящиеся» бактерии способны к адгезии и паренхиме почечной ткани и эпителию мочевого пузыря. Эти бактерии характеризуются повышенным образованием уреазы и гемолизинов. На кровяном агаре гемолитическая активность проявляется через 48 часов.
При снижении защитных сил организма протеи вызывают у человека циститы, энтероколиты, воспаление среднего уха, сепсис, послеоперационное нагноение ран и т. д.
Иммунитет после перенесенных заболеваний непродолжительный.
Лабораторные методы диагностики такие же, как и при других кишечных инфекциях. Идентификация протеев самая простая во всем семействе Enterobacteriaceae. Их легко распознать по способности давать вид «роения» и по гнилостному запаху.
Профилактика протейных заболеваний сводится к соблюдению санитарно-гигиенических правил: защита воды и продуктов питания от загрязнения испражнениями и гнойными выделениями.



Билет 10

1. Морфология бактерий: определение, осн. Формы, взаимное расположение в мазках, значение при микробиологической диагностике
Морфология микроорганизмов – раздел микробиологии, изучающий форму, строение бактерий и их взаимное расположение относительно друг друга. Взаимное расположение бактерий определяется типом деления клетки, наличием капсулы, слизистого чехла, пилей.
Бактерии (прокариоты) существенно отличаются от клеток растений и животных (эукариоты).
Прокариоты обычно содержат один ген, который не отделен специальной мембраной от цитоплазмы, не имеют митохондрий и аппарата Гольджи, не обладают амебоидным движением. Они состоят из нуклеоида, цитоплазмы (содержащей различные включения), оболочки и других структур-органоидов (жгутики), и несмотря на внешнюю простоту строения бактериальной клетки, представлют собой сложное живое существо.
Ультраструктура бактерий изучается с помощью электронно-микроскопических и микрохимических исследований.
* Нуклеоид, ядерное вещество клетки, ее наследственный аппарат, состоит из двойной нити ДНК, сомкнутой в кольцо и свободно погруженное в цитоплазму, в отличие от эукариотов. В молекуле ДНК закодирована генетическая информация клетки.
* Цитоплазма бактерий дисперсная смесь коллоидов, состоящая из воды, белков, углеводов, липидов, минеральных соединений и других веществ. Бактериальная цитоплазма неподвижна, имеет высокую плотность, содержит мелкие зерна, состоящие из 60% РНК и 40% протеина, представляющие собой рибонуклеоп-ротеиды, получившие название «рибосом». Они выполняют функцию синтеза белка.
В цитоплазме находятся включения: гранулы, содержащие запасные питательные вещества; гранулы волютина, ли-попротеидные тельца, гликоген, пигментные скопления, сера, кальций и др. Гранулы волютина окрашиваются более интенсивно, чем цитоплазма клетки, и содержат метафос-фаты. Они обнаруживаются в некоторых видах бактерий, как, например: Corynebacterium diphtheriae, что учитывается при лабораторной диагностике дифтерии. Липопротеидные тельца в виде капель жира довольно часто встречаются у ряда бацилл и спирилл. Они исчезают при голодании клеток и появляются при росте бактерий на питательных средах, содержащих много углеводов.
Биологическое значение гранул волютина и липопротеи-
новых включений состоит в том, что они служат запасным питательным материалом и используются бактериями при недостатке питательных веществ.
Роль вакуолей изучена недостаточно. Одни ученые их рассматривают как участки, где откладываются вредные продукты метаболизма (экзотоксины), другие приписывают им роль добавочных ферментов дыхания.
Оболочка бактерий состоит из цитоплазматической мембраны, клеточной стенки и капсульного слоя, превращающегося у некоторых видов в истинную капсулу.
Цитоплазматическая мембрана прилегает к внутренней поверхности стенки и состоит из трех слоев: липидного, протеинового и полисахаридного. Она выполняет функцию разделительной перегородки, через нее с помощью ферментов осуществляется активный транспорт различных веществ и ионов, необходимых для жизнедеятельности клетки. В клеточных мембранах локализованы высокочувствительные рецепторы, с помощью которых клетки распознают и отрабатывают сигналы, поступающие из окружающей среды, дифференцируют питательные вещества и различные антибактериальные соединения. На поверхности цитоплазматической мембраны содержатся активные ферментные системы (пер-меазы), принимающие участие в синтезе белка, ферментов, нуклеиновых кислот. Цитоплазматическая мембрана образует лизосомы, участвующие в делении клетки.
# Клеточная стенка защищает бактерии от вредных факторов внешней среды, принимает участие в росте и делении клетки. Прочность стенки обеспечивает му-реин, вещество полисахаридной природы. Некоторые вещества, например, лизоцим, могут разрушать клеточную стенку. Бактерии, полностью лишенные клеточной стенки, называются «протопластами», они имеют шаровидную форму, обладают способностью к ды-
ханию, синтезу белков, нуклеиновых кислот, ферментов, спорообразованию. Сохранить протопласты можно только в гипертонических растворах.
* Капсула. Под влиянием различных факторов среды некоторые микробы обладают способностью откладывать на поверхности своего тела более мощный слизистый слой вокруг клеточной стенки, получивший название «капсулы».
Капсульное вещество бактерии состоит из полисахаридов, мукополисахаридов или полисахаридов. Капсулообра-зование считается приспособительной функцией микроба. Патогенные капсульные микробы (клебсиеллы, возбудители сибирской язвы, возбудители пневмонии) более устойчивы к фагоцитозу, действию защитных факторов организма и внешней среды.
2. Нормальная микрофлора орг-ма человека: определение, состав, роль в физнол. Процессах
Нормальная микрофлора организма человека обладает антагонистическим действием к различным видам микроорганизмов. Она препятствует их размножению и проникновению в организм. Например, кишечная палочка вырабатывает молочную кислоту, которая оказывает губительное действие на бактерии. Если микроорганизмы преодолевают эти барьеры, то в работу вступают вторичные барьеры неспецифических факторов защиты. К ним относятся:
1) гуморальные факторы система комплемента. Комплемент это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген антитело. С активации комплемента начинается лю-
бое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;
2) клеточные факторы защиты.
Фагоциты. Фагоцитоз (от греч. phagos пожираю, cytos клетка) впервые открыл И. И. Мечников, за это открытие в 1908 г. он получил Нобелевскую премию. Механизм фагоцитоза состоит в поглощении, переваривании, инактивации инородных для организма веществ специальными клетками-фагоцитами. К фагоцитам Мечников отнес макрофаги и микрофаги. В настоящее время все фагоциты объединены в единую фагоцитирующую систему. В нее включены: промоноциты вырабатывает костный мозг; макрофаги разбросаны по всему организму: в печени они называются «купферовские клетки», в легких «альвеолярные макрофаги», в костной ткани «остеобласты» и т. д. Функции клеток-фагоцитов самые разнообразные: они удаляют из организма отмирающие клетки, поглощают и инактивируют микробы, вирусы, грибы; синтезируют биологически активные вещества (лизоцим, комплемент, интерферон); участвуют в регуляции иммунной системы.
Процесс фагоцитоза, т. е. поглощение инородного вещества клетками-фагоцитами, протекает в 4 стадии:
1) активация фагоцита и его приближение к объекту (хемотаксис);
2) стадия адгезии прилипание фагоцита к объекту;
3) поглощение объекта с образованием фагосомы;
4) образование фаголизосомы и переваривание объекта с помощью ферментов.
Фагоциты подвижные клетки и могут перемещаться по направлению к объекту. Движение фагоцита к объекту называется хемотаксисом. Как правило, фагоциты «переваривают» захваченные чужеродные агенты, тогда говорят о завершенном фагоцитозе. Но не всегда фагоцитоз заканчивается перевариванием такой фагоцитоз называется незавершенным. Причины, обусловливающие незавершенный фагоцитоз:
1) некоторые микроорганизмы подавляют слияние фага и лизосомы;
2) некоторые микроорганизмы выделяют вещества, которые нейтрализуют действие рибосомальных ферментов;
3) некоторые микроорганизмы могут выходить из фагосо-мы;
4) некоторые бактерии имеют устойчивость к лизосомаль-ным ферментам (гонококк, стафилококк, палочки туберкулеза и лепры).
В организме есть вещества обсанины, которые повышают фагоцитоз. Это нормальные антитела, которые «обволакивают» антигены и способствуют их фиксации на фагоците.
3. Синегнойная палочка


















Билет 11

1. Получение энергии путем субстратного фосфорилнроваппя. Брожение.
Аэробные бактерии в процессе дыхания окисляют различные органические вещества (углеводы, белки, жиры, спирты, органические кислоты и пр.).
Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое мол очно-кислыми бактериями, масляно-кислое и пр.
2. Инфекционные свойства вирусов, особ-тп вирусных инфекций

3. Дисбактериоз кишечника
Дисбактериоз нарушения качественного и количественного состава нормальной микрофлоры.
Причины развития дисбактериоза
1) заболевания, протекающие с поражением кишечника: острая и хроническая дизентерия, сальмонеллез, кишечные гельминтозы, хронические колиты и энтероколиты, неспецифический язвенный колит и др.;
2)массивное поступление в организм антибиотиков;
3)применение химиотерапевтических средств и лучевые воздействия;
4)недоношенность новорожденных, ранний перевод на искусственное вскармливание, токсикозы беременности;
5)гнойно-инфекционные заболевания у детей (сепсис, пневмония, пиодермия, омфалиты, отиты и др.). Дисбактериоз I степени (латентная, компенсированная
форма) характеризуется незначительными изменениями в аэробной части микробионеноса (увеличение или уменьшение количества кишечной палочки). Бифидофлора и лакто-флора не изменены. Как правило, кишечные дисфункции не регистрируются. Такая степень дисбактериоза, отмеренная после применения бактерийных биологических препаратов, свидетельствует об их нормализующем эффекте.
Дисбактериоз II степени (субкомпенсированная форма дисбактериоза) на фоне незначительного снижения количественного содержания бифидобактерий выявляются количественные и качественные изменения кишечной палочки или других условно-патогенных микроорганизмов.
Дисбактериоз II степени является пограничным состоянием и свидетельствует о том, что обследуемый может быть отнесен к группе «риска». Если же эта форма дисбактериоза выявлена при лечении бактерийными препаратами, то можно говорить о начавшейся нормализации микробиоценоза кишечника.
Целесообразно назначение бактерийных препаратов до восстановления нормальной микрофлоры даже в случаях отсутствия явных клинических проявлений и дисфункций кишечника.
Дисбактериоз Ш степени значительно сниженный уровень бифидофлоры (105107) в сочетании со снижением лак-тофлоры и резким изменением уровня кишечных палочек. Вслед за снижением бифидофлоры нарушаются соотношения в составе кишечной микрофлоры, создаются условия для проявления патогенных свойств условно-патогенных микроорганизмов. Как правило, при дисбактериозе III степени возникают кишечные дисфункции. Необходимым является незамедлительное назначение бифидумбактерина, лактобакте-рина или бификола.
Дисбактериоз IV степени отсутствие бифидофлоры, значительное уменьшение лактофлоры и изменение количества кишечной палочки (снижение или увеличение), возрастание как облигатных, так и факультативных и не характерных для здорового человека видов условно-патогенных микроорганизмов в ассоциациях. Нарушаются нормальные соотношения в составе кишечного микробиоценоза, в результате чего снижается его защитная и витаминосинтезирую-щая функция, изменяются ферментивные процессы, возрастают нежелательные продукты метоболизма условно-патогенных микроорганизмов. Все это приводит к дисфункциям желудочно-кишечного тракта и деструктивным изменениям кишечной стенки, бактериемии и сепсису, поскольку снижается общая и местная сопротивляемость организма и реализуется патогенное действие условно-патогенных микроорганизмов. Выявлено, что такая степень дисбактериоза, особенно у новорожденных детей с сепсисом, может приводить к развитию перфоративного язвенно-некротического энтероколита. В таких случаях обязательным является назначение бифидумбактерина.




Билет 12

1. Клиническая м/б : определение, объекты изучения, задачи. Условно-патогенные м/о.
клиническая – вид микробиологии, который изучает роли условнопатогенных микроорганизмов в возникновении заболеваний человека,
а также их диагностику, профилактику и лечение
Условно-патогенные микроорганизмы обладают выраженной биологической пластичностью, позволяющей им адаптироваться к существованию в различных экологических ситуациях. Для одних естественной средой обитания является организм человека, для других организм отдельных видов животных, а для некоторых внешняя среда. В кишечнике человека обитают следующие условно-патогенные бактерии: Е. coli, Klebsiella, Proteus, Enterobacter, Serratia, Providentia, Pseudomonas.
2. Особенности заболеваний, вызываемых УПМ получение энергии путем окислительного фосфорилирования (дыхание)
3. Возбудитель сибирской язвы
В России эта болезнь была названа сибирской язвой в связи с большой эпидемией, описанной на Урале в конце XVHI в. С. С. Андреевским. Bacillus anthracis возбудитель сибирской язвы у человека и животных.
Морфологические и культуральные свойства. В. anthracis крупные палочки, в мазках располагаются попарно или короткими цепочками. Неподвижны, вне организма образуют споры, очень устойчивые во внешней среде. Бациллы сибирской язвы в организме человека и животных образуют капсулы. Грам+, аэробы или факультативные анаэробы. Хорошо растут на простых средах при рН 7,27,8. На мясопептон-ном агаре образуют шероховатые колонии с неровными краями, напоминающими львиную гриву. При росте на жидких средах не дают равномерного помутнения, а образуют осадок на дне пробирки, который напоминает комочек ваты.
Ферментативные свойства. Бациллы сибирской язвы обладают высокой биохимической активностью. Содержат ферменты: липазу, дегидразу, пероксидазу, каталазу. Гид-ролизуют крахмал. В отличие от сапрофитов, палочки сибирской язвы не разлагают фосфаты, содержащиеся в питательной среде. Молоко свертывают и пептонизируют за 3
5 суток. С образованием кислоты бациллы ферментируют глюкозу, сахарозу, мальтозу.
Антигенная структура. В. anthracis имеет капсульный К-антиген (протеиновый) и соматический О-антиген (поли-сахаридный).
Резистентность. Вегетативные формы сибиреязвенных бацилл быстро погибают при кипячении при температуре 60°С погибают через 15 мин, в бульонной культуре в запаянных ампулах могут сохраняться до 40 лет. Споры сибирской язвы более устойчивы во внешней среде: в почве могут сохранять свою жизнеспособность до 100 лет; кипячение выдерживают 1520 мин, также устойчивы к дезраство-рам при действии 1 % раствора формалина разрушаются только через 2 часа.
Эпидемиология. Сибирская язва антропозоонозная инфекция. Среди животных чаще всего болеют травоядные, которые заражаются при заглатывании спор во время выпаса или при поедании загрязненных кормов. У животных преобладают кишечная и септическая формы заболевания. С мочой и испражнениями животные выделяют бациллы сибирской язвы в окружающую среду. Летальность среди животных высокая. Клинические признаки болезни (судороги, диарея с кровью) проявляются перед гибелью животного.Человек заражается при контакте с инфицированным материалом (уход за больными животными); при употреблении плохо проваренного мяса от больных животных, а также заражение может произойти через кожные покровы (порезы, ссадины), куда могут попасть споры сибирской язвы. Ежегодно в мире регистрируют до 100 тыс. случаев заражения сибирской язвы. Большую эпидемическую опасность представляют скотомогильники, особенно если трупы животных, погибших от сибирской язвы, были зарыты без достаточных предосторожностей.
Патогенез поражений. Сибирская язва проявляется в трех основных клинических формах: кожной, легочной и кишечной. Патогенность возбудителя сибирской язвы зависит от
капсуло- и токсинообразования. Капсула защищает возбудителя от клеток фагоцитов, а токсин опосредует проявление признаков и симптомов сибирской язвы. Токсин действует на ЦНС и может приводить к летальному исходу.
Клинические проявления зависят от места проникновения возбудителя. Инкубационный период при всех формах болезни составляет 26 суток.
При кожной форме местом проникновения возбудителя являются поврежденные кожные покровы, главным образом открытые части тела (лицо, шея, кисти рук). В участке локализации возбудителя образуется сибиреязвенный карбункул: сначала появляется везикула диаметром до 5 мм, ее содержимое имеет серозный характер, затем становится темным и кровянистым. Из-за сильного зуда больные часто расчесывают везикулу или она лопается сама, и на ее месте образуется струп, который быстро увеличивается в размерах и чернеет (от греч. anthrax уголь, отсюда название возбудителя). Струп окружает инфильтрат в виде багрового вала.
При легочной форме заражение происходит аэрогенным путем при ингаляции спор возбудителя. Это происходит во время работы с материалами, инфицированными спорами сибиреязвенных бацилл. Болезнь протекает по типу тяжелой бронхопневмонии: у больных появляются чувство стеснения в груди, насморк, слезотечение, повышается температура до 40°С, позднее развивается пневмония, часто протекающая по типу отека легких. Бациллы в большом количестве выделяются с мокротой. Поскольку в начале заболевания практически невозможно поставить диагноз, дальнейшее развитие болезни приводит к летальному исходу.
Кишечная форма возникает в результате употребления в пищу мяса больных животных. При этой форме заболевания отмечается тяжелейшее поражение слизистой оболочки кишечника с кровоизменениями и очагами некроза. Общие клинические проявления: повышение температуры, рвота, диарея с кровью, боли внизу живота, на коже появляются вторичные пастулы. Смерть наступает через 34дня после начала заболевания при явлениях сердечной недостаточности.
В настоящее время в РФ кожная форма сибирской язвы регистрируется спорадически, кишечная крайне редко, а легочная форма почти не встречается.
Лабораторная диагностика. При кожной форме исследуют экссудат карбункула, при легочной мокроту, при кишечной испражнения и мочу. Выделение возбудителя проводят по стандартной схеме с посевом на питательные среды, определением подвижности, окраски по Граму и изучением биохимических свойств возбудителя. Кожная проба проводится внутрикожным введением бактериального аллергена (антраксина). Эту пробу применяют для диагностики сибирской язвы при эпидемиологических исследованиях.
Лечение. Проводится комплексное лечение больных сибирской язвой, направленное против токсина и бацилл. Больным вводится противосибиреязвенный глобулин (3050 мл) и проводится антибиотикотерапия (пенициллин, эритромицин, антибиотики тетрациклинового ряда и стрептомицин). Предпочтение отдается пенициллину при введении больших доз наблюдается хороший терапевтический эффект.
Профилактика. Мероприятия по предупреждению сибирской язвы обеспечивают совместно с ветеринарной службой. Они должны включать своевременное выявление, изоляцию и лечение больных животных, а также иммунизацию животных живой вакциной, приготовленной из некапсулированно-го штамма В. anthracis. Профилактика сибиреязвенной болезни включает тщательную дезинфекцию помещений, территории и всех предметов, где находились больные животные. Трупы животных, погибших от сибирской язвы, сжигают или закапывают в специально отведенном месте (скотомогильник) на глубину не менее 2 м и засыпают хлорной известью. Кроме того, ветеринарная служба обеспечивает надзор за предприятиями, занимающимися переработкой мяса, а также осуществляет контроль за выпуском и реализацией кожевенных и меховых изделий из животного сырья.


Билет 13
Цель, принципы, методы микробиологической диагностики ииф. Болезней
При диагностике заболеваний решающие значение имеет клиническое обследование больного, позволяющее нередко уже в первые дни и даже часы болезни выявить симптомы характерные, для данной патологии. Однако большое значение придается и лабораторным методам исследования, в том числе и иммунобактериологическим. Они облегчают раннюю диагностику, позволяют дифференцировать нозологические формы заболеваний, имеющих общность в клинических проявлениях и течении болезни. Применение бактериологического метода диагностики способствует осуществлению ранней диагностики инфекционных болезней, дает лечащему врачу объективные доказательства достоверности поставленного диагноза. Успех бактериологической лабораторной диагностики в значительной степени зависит от правильности взятия патологического материала, своевременной доставки его в лабораторию, грамотного оформления бланка-направления.
1. Основы микробиологической диагностики
Диагностический процесс в бактериологии складывается из четырех основных этапов:
I – формулировка задачи и выбор метода исследования;
II – выбор и взятие исследуемого материала, его хранение и транспортировка;
III – проведение исследований;
IV – анализ полученных результатов.
Различают следующие методы лабораторной диагностики заболеваний микробной природы:
I. Методы, основанные на выявлении инфекционных агентов (бактерий, вирусов, грибов, простейших и т.д.):
микроскопические методы (базируются на прямом обнаружении возбудителя в патологическом материале с помощью различных приемов микроскопии);
бактериологические (основаны на культивировании возбудителя на питательных средах или на культурах тканей с целью выделения его в чистой культуре и последующей идентификации);
биологические (целью является воспроизведение инфекционного заболевания в организме восприимчивых животных с последующим выделением чистой культуры возбудителя и ее идентификацией);
методы, позволяющие обнаружить в исследуемом материале соединения, синтезированные микроорганизмы (летучие жирные кислоты при диагностике инфекций, обусловленных неспорообразующими анаэробами или токсин при диагностике ботулизма);
иммунологические методы поиска антигенов возбудителей в исследуемом материале с помощью серологических реакций с использованием диагностических сывороток (сероидентификация);
генетические методы, основанные на обнаружении нуклеиновых кислот возбудителя в пробе.
II. Методы исследования активного иммунитета направлены, чаще всего на выявление нарастания титров антител к возбудителям в сыворотке крови больных (серодиагностика) или на обнаружение сенсибилизации организма больного (аллергодиагностика).
III. Неспецифические лабораторные тесты, по характеру отклонений выявленных показателей от нормальных позволяют обнаружить патологические изменения, характерные для инфекционных процессов определенной этиологии (например, наличие изменение активности трансаминаз при вирусных гепатитах).
2. Стерилизация, дезинфекция; определение, методы, контроль, практическое применение. Понятие Об асептике и антисептике.
Стерилизация это полное освобождение объектов окружающей среды от микроорганизмов и их спор. Существуют физические, химические и механические способы стерилизации.
К наиболее распространенным способам физической стерилизации относятся автоклавирование и сухожаровая стерилизация.
К наиболее распространенным способам физической стерилизации относятся автоклавирование и сухожаровая стерилизация.
Автоклавирование это обработка паром под давлением, которая проводится в специальных приборах автоклавах. Автоклав представляет собой металлический цилиндр с прочными стенками, состоящий из двух камер: парообразующей и стерилизующей. В автоклаве создается повышенное давление, что приводит к увеличению температуры кипения воды. Паром под давлением стерилизуют питательные среды, патологический материал, инструментарий, белье и т.д.
Наиболее распространенный режим работы автоклава 2 атм., 120°С, 1520 мин. Началом стерилизации считают момент закипания воды.
К работе с автоклавом допускаются подготовленные специалисты, которые точно и строго выполняют все правила работы с этим прибором.
Сухожаровая стерилизация проводится в печах Пас-тера. Это шкаф с двойными стенками, изготовленный из металла и асбеста, нагревающийся с помощью электриче-
ства и снабженный термометром. Сухим жаром стерилизуют, в основном, лабораторную посуду. Обеззараживание материала в нем происходит при 160°С в течение 1 часа.
В бактериологических лабораториях используется такой вид стерилизации, как прокаливание над огнем. Этот способ применяют для обеззараживания бактериологических петель, шпателей, пипеток. Для прокаливания над огнем используют спиртовки или газовые горелки. К физическим способам стерилизации относятся также УФ-лучи и рентгеновское излучение. Такую стерилизацию проводят в тех случаях, когда стерилизуемые предметы не выдерживают высокой температуры.
Механическая стерилизация проводится при помощи фильтров (керамических, стеклянных, асбестовых) и особенно мембранных ультрафильтров из коллоидных растворов нитроцеллюлозы. Такая стерилизация позволяет освобождать жидкости (биопрепараты, сыворотку крови, лекарства) от бактерий, грибов, простейших и вирусов, в зависимости от размеров пор фильтра. Для ускорения фильтрации создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.
В микробиологической практике часто используют асбестовые фильтры Зейтца, Шамберлана. Такие фильтры рас-читаны на одноразовое применение.
Химическая стерилизация этот вид стерилизации применяется ограниченно. Чаще всего используют химические вещества для предупреждения бактериального загрязнения питательных сред и иммунобиологических препаратов.
При химической стерилизации возможно использование двух токсичных газов: окиси этилена и формальдегида. Эти вещества в присутствии воды могут инактивировать ферменты, ДНК и РНК, что приводит бактериальные клетки к гибели. Стерилизация газами осуществляется в присутствии пара при 5080°С в специальных камерах. Этот вид стерилизации опасен для окружающих, однако существуют объекты, которые могут быть повреждены при нагревании и по-
этому их можно стерилизовать только газом. Например, оптические приборы, некоторые питательные среды.
Для проведения стерилизации тех или иных объектов необходимо строго соблюдать установленный режим стерилизации (например, для питательных сред он указан в рецепте приготовления).
При проведении стерилизации в автоклаве необходимо осуществлять контроль стерилизации.
Существует 3 вида контроля:
* химический в автоклав при каждой загрузке кладут бензойную кислоту, мочевину, запаянные в ампулы, или индикаторы стерилизации ТВИ 120°С 1 атм, ТВИ - 132°С - 2 атм.
При достижении заданного режима стерилизации указанные вещества меняют свой цвет, а термовременные индикаторы темнеют;
термический 2 раза в месяц максимальным термометром во время стерилизации проводят замер температуры в контрольных точках, которая должна достичь заданных параметров;
* биологический проводится 2 раза в год. В контрольных точках помещают пробирки со споровой культурой Bacillus stearothermophilies, погибающей при 120°С в течение 15 мин. После стерилизации пробирки помещают в термостат при t = 55 °С на 48 часов. При достижении заданного режима рост тесткульту-ры отсутствует: фиолетовой цвет среды в пробирках не меняется.
Для сохранения стерильности стерилизуемые предметы должны иметь упаковку, не допускающую микробного загрязнения.
3. Возбудитель чумы
В этот род включены 3 вида бактерий: Y. pestis возбудитель чумы; Y. pseudotuberculosis возбудитель псевдотуберкулеза и Y. enterocolitica возбудитель персиноза.
Представители этого рода являются подвижными или неподвижными палочками, спор не образуют, капсул не имеют, факультативные анаэробы, паразитируют в организме человека и животных. Хорошо растут на простых питательных средах.
Типовой вид Y. pestis возбудитель чумы.
Морфологические и культуральные свойства. Чумная бактерия неподвижна, спор и капсул не образует. Молодые колонии имеют неровные края («кружевной платочек»), зрелые колонии неровные края в виде «ромашки». На скошенном агаре через 48 часов при 28° С образуют серовато-белый налет, врастающий в среду. На бульоне через 48 часов образуют пленку на поверхности и хлопьевидный осадок.
Y. enterocolitica на плотных средах образует мелкие, блестящие, голубоватые колонии. На среде Эндо они имеют розоватый оттенок. На жидких средах образуют равномерное помутнение.
Y. pseudotuberculosis образуют бесцветные колонии на среде Эндо. Часто колонии выпуклые, бугристые и по внешнему виду могут напоминать колонии Y. pestis.
Opt температура роста для персиний 28°С, рН 5,0 8,0.
Антигенная структура. Все виды персиний имеют О-ан-тиген (эндотоксин), который является очень токсичным для животных и человека. Методом преципитации в агаре у возбудителя чумы обнаружены антигены, общие с псевдотуберкулезными, кишечнотифозными, дизентерийными бактериями.
Резистентность. Возбудитель чумы очень устойчив к низким температурам, на предметах и одежде может сохранять свою жизнеспособность до 6 месяцев, в воде и мокроте 1030 суток, в молоке до 3 месяцев. Возбудитель чумы очень чувствителен к высыханию и действию высоких температур, при кипячении гибнет через 1 мин, под действием 5% раствора фенола через 510 мин, 5% раствора лизола через 210 минут.
Эпидемиология. Для всех персиний основными хозяевами являются животные, вторичным человек.
Y. pestis чума человеку передается через укусы блох, а также контактным, алиментарным или воздушно-капельными путями.
Эпидемии чумы известны с древнейших времен. Это заболевание приводило к гибели миллионов людей. В XIV XV вв. пандемия чумы унесла около 60 млн жизней. В 1894 г. в Гонконге началась 3-я пандемия чумы, которая продолжалась 20 лет и унесла 10 млн жизней.
Последние вспышки были зарегистрированы в Индии (90-е гг. XX в.).
Y. Enterocolitica вызывают у человека инфекции, сопровождающиеся энтеритом, диареей, псевдоаппендицитом. Главный симптом заболевания гастроэнтерит. Этот возбудитель в природе распространен повсеместно, выделяется от различных животных. Подъем заболеваемости персинио-зами отмечают в осенне-зимний период. Большинство случаев заражения связаны с употреблением недостаточно проваренного мяса свинины.
Y. pseudotuberculosis вызывает у человека брыжеечный аденит, а у диких и домашних животных системные поражения. Заражение человека происходит от инфицированного животного путем, общим для большинства кишечных инфекций. Природный резервуар возбудителя домашние животные и птицы, а также олени, грызуны.
Патогенез. Y. pestis внедряется в организм в месте укуса блохи; блохи инфицируются бактериями, питаясь кровью больных животных. При легочной форме бактерии чумы передаются воздушно-капельным путем с мокротой при кашле больного человека. В зависимости от места локализации возбудителя, иммунного статуса организма, вирулентности микроба может наблюдаться кожная, бубонная, кишечная, первично-легочная, вторично-легочная форма чумы.
Y. Enterocolitica вызывает энтероколит с диареей, лихорадкой и болями в животе. Вирулентность этого возбудителя связана с адгезивными и инвазионными свойствами, а также выделением энтеротоксина, аналогичного термостабильным токсинам Е. coli. Y. Enterocolitica проникают в слизистую оболочку тонкой кишки, там усилен-
но размножаются и попадают в брыжеечные лимфатические узлы.
Клинические проявления. Чума начинается внезапно. Инкубационный период от 2 до 6 дней. Продромальный период отсутствует: появляется озноб, сильная головная боль и головокружение; лицо становится бледным, с синюшным оттенком и выражением страдания (ужаса) fades pestica. Каждой форме чумы присущи специфические клинические проявления. Наиболее часто, попав в лимфатический узел, возбудитель вызывает в нем серозно-геморрагическое воспаление, при этом формируется болезненный бубон. Кишечная чума проявляется диареей с обильным выделением крови и слизи. Обычно заканчивается летальным исходом.
Иерсинеоз характеризуется диареей с имитацией приступа аппендицита. Иногда кишечная инфекция может трансформироваться в септицемию с поражением внутренних органов, которые возникают через 2 недели от начала болезни.
Y. pseudotuberculosis вызывает энтероколиты и воспаление брыжеечных лимфатических узлов.
Иммунитет. После перенесения чумы у человека вырабатывается стойкий иммунитет. Древние люди догадывались об этом, и переболевших людей привлекали для ухода за больными и для захоронения трупов.
Иммунитет обусловлен фагоцитарной активностью клеток лимфоидно-макрофагальной системы.
Профилактика
1. Ранняя диагностика чумы.
2. Немедленная изоляция больных, госпитализация и установление карантина.
3. Проведение в очагах тщательной дезинсекции и дератизации.
4. Индивидуальная защита медицинского персонала, профилактическое введение стрептомицина и вакцинация.
5. Выполнение международных конвенций по профилактике
Специфическая профилактика проводится путем введения человеку живой вакцины EV. Ее выпускают в сухом виде, вводят подкожно, внутрикожно, накожно однократно или двукратно. Такой иммунитет сохраняется до года. В зависимости от эпидемиологической обстановки проводится ревакцинация через 612 месяцев. В последние годы заболеваемость чумой снизилась, хотя в ранее эндемических районах отмечается некоторая активизация природных очагов.



Билет 14

1. Работы Коха, их значение в развитии и становлении мед. м/б
Большое значение для медицинской микробиологии имели открытия немецкого ученого Роберта Коха (18431910), который обогатил микробиологию совершенными методами исследования. Им и его учениками в практику лабораторной техники введены плотные питательные среды (картофель, желатин, свернутая сыворотка, МПА), анилиновые красители, иммерсионная система, микрофотографирование. Благодаря усовершенствованию техники и методики микробиологических исследований Р. Кох окончательно установил этиологию сибирской язвы, открыл возбудителя туберкулеза (1882), холеры (1883) и получил из туберкулезных микробактерий туберкулин. Ученый подробно исследовал раневые инфекции и разработал способ выделения в чистой культуре патогенных бактерий.
2. Экспериментальная инфекция : цели, методы воспроиведення, практическое значение
3. Возбудитель холеры
Представители этого семейства изогнутые палочки, подвижные, температурный оптимум для большинства видов 37°С. Некоторые виды патогенны для беспозвоночных и млекопитающих.
В род Vibrio включены прямые и изогнутые палочки, подвижность обусловлена одним или несколькими жгутиками. Вибрионы распространены в пресных и соленых водоемах. Патогенны для животных и человека. Типовой вид V. cholerae.
Vibrio cholerae возбудитель холеры.
Возбудителями холеры являются: биовар классического холерного вибриона, описанного впервые в 1854 г. Ф. Паци-ни и подробно исследованного Р. Кохом в 1883 г., и биовар холерного вибриона Эль-Тор, выделенного из трупов паломников на карантинной станции Эль-Тор в Египте (1906 г.). Эти два биовара являются возбудителями холеры у человека. Существует еще 2 биовара: V. cholerae proteus вызывает понос у птиц, у людей гастроэнтерит, и V. cholerae albensis обнаружен в воде, испражнениях и желчи человека.
Морфологические и культуральные свойства. Холерный вибрион это изогнутая палочка, в виде запятой, имеет один жгутик, спор и капсул не образуют, грам~. Под влиянием
различных факторов вибрионы подвержены изменчивости. Типичные формы обычно выделяют из патологического материала. Подвижность бактерий определяют методом висячей или раздавленной капли.
Холерный вибрион быстрорастущий микроорганизм, на пептонной воде, уже через 8 ч после посева виден рост культуры невооруженным глазом.
На твердых средах вибрион образует небольшие круглые, голубоватые в проходящем свете колонии. Колонии маслянистые по консистенции, легко снимаются петлей. На скошенном агаре холерный вибрион образует желтоватый налет. На жидких средах образует равномерное помутнение с нежной пленкой на поверхности. При вьфащивании холерных вибрионов используют питательные среды с рН 8,3 9,0.
Ферментативные свойства сбраживают сахара с образованием кислоты (глюкозу, лактозу, мальтозу, сахарозу, маннозу, маннит); разжижают свернутую сыворотку, желатин, образуют индол, аммиак, молоко свертывают постоянно. Гемолитическая активность и гемагтлютинируюпще свойства являются нестабильными признаками и учитываются как второстепенные данные в идентификации микробов рода Vibrio.
Антигенная структура. У холерных вибрионов имеются О- и Н-антигены. Н-антиген (жгутиковый) термолабильный, О-антиген термостабильный, специфический для всех вибрионов, имеет 5 компонентов: А, В, С, D, Е. А-компо-нент присущ всем холерным вибрионам. Разные сочетания присущи сероварам Огава (АВ), Инаба (АС), Хикоджйма (ABC). По структуре О-антигена выделяют 139 серогрупп, возбудители классической холеры и холеры Эль-Тор объединяют в 01. Холероподобные вибрионы не агглютинируются 01-антисывороткой, их называют неагглютинирующимися или НАГ-вибрионами. Они обнаруживаются у больных и вибрионосителей. Полагают, что НАГи являются следствием изменчивости холерных вибрионов, которые утрачи-
вают не только агглютинабельность, но и другие биологические свойства. НАГи сходны с холерными вибрионами по морфологическим культуральным свойствам, но не обладают общими с ними О- и Н-антигенами.
Резистентность. Очень устойчивы к низким температурам, в воде сохраняются до 5 суток, в почве до 2 месяцев, в испражнениях до 5 месяцев. Холерный вибрион Эль-Тор обладает большей устойчивостью в окружающей среде, чем классический холерный вибрион.
При действии солнечного света холерные вибрионы погибают через несколько часов. При кипячении гибнут сразу. Также, чувствительны к дезрастворам, особенно к кислотам (внутренняя среда желудка человека является хорошим защитным барьером против холерного вибриона).
Эпидемиология. Холера это острая кишечная инфекция. Вибрионы передаются от больных и носителей через пищу, воду, мух и грязные руки, что характерно для всех кишечных инфекций. Поскольку существуют скрытые формы течения болезни, выделение возбудителя в окружающую среду обусловливает его постоянную циркуляцию.
Наиболее предрасположены к холере лица, проживающие в неблагоприятных условиях (отсутствие питьевой воды) и не соблюдающие правил личной гигиены. Чаще всего подъем заболеваемости отмечают в летне-осенний сезон.
Патогенез поражений. Микробы проникают через рот в тонкий кишечник. Кислая среда желудка губительно действует на холерный вибрион, но в ряде случаев этот барьер нарушается вследствие действия различных факторов, нейтрализующих или снижающих бактерицидные свойства желудочного сока. Небольшая часть все же достигает тонкой кишки, где щелочная среда является благоприятной для размножения возбудителей. Жгутики холерных вибрионов обеспечивают колонизацию возбудителей в организме. Холерный вибрион вырабатывает токсины: эндотоксин и экзотоксин. Эндотоксин не играет существенной роли в развитии болезни. Под действием экзотоксина (холерогена) в просвет
кишки выделяется изотоническая жидкость, состоящая из Н2О, Cl, Na, К, НСО3. В сутки при разных формах заболевания может секретироваться 102030 литров жидкости, которая обратно не всасывается, что приводит к обезвоживанию организма.
Клинические проявления. Инкубационный период холеры от нескольких часов до 23 суток. У большинства инфицированных заболевание протекает бессимптомно либо возможна легкая диарея. При клинически выраженных случаях заболевание характеризуется общим недомоганием, болями в животе, диареей, рвотой. Испражнения имеют характерный вид «рисовый отвар» и «рыбный» запах. В развитии болезни различают несколько форм заболевания:
Степень дегидратации
Форма заболевания
Потеря жидкости к весу тела, в%
легкая
средней тяжести
тяжелая
холерный алгид
В тяжелой форме заболевания у больного начинается гиповалемический шок, что приводит к понижению артериального давления, сердечной недостаточности и нарушению сознания. В IV степени дегидратации резко снижается температура тела до 3534°С, больные уже находятся без пульса и давления. В этой стадии прекращается понос и рвота, начинается учащенное, резкое дыхание, черты лица заостряются.
Продолжительность этих проявлений зависит от своевременно проведенного лечения. При отсутствии лечения больной может умереть.
После перенесенного заболевания остается непродолжительный иммунитет, возможны случаи повторного заражения.
Профилактика холеры направлена на выполнение санитарно-гигиенических требований и проведение карантин-
ных мероприятий. Для специфической профилактики применяют холерную убитую вакцину и холерную комбинированную вакцину, состоящую из двух компонентов О-антигена холерного вибриона и холерогена-анатоксина.
Лабораторная диагностика. Материалом для исследования являются испражнения, желчь, рвотные массы, секционный материал, вода, сточные воды, смывы с объектов окружающей среды, пищевые продукты и т. д,
Лучше всего брать патологический материал от больного до начала антибактериальной терапии. Для посева используют жидкие среды обогащения, щелочной МП А, элективные и дифференциально-диагностические среды.
Исследование проводят в несколько этапов.
I этап. Материал засевают в пептонную воду на 6 8 часов, на щелочной агар или на одну из элективных сред.
II этап. Через 68 часов после начала исследования изучают характер роста в пептонной воде, откуда высевают возбудителя на щелочной агар и вторую среду накопления.
III этап. Через 14 часов после начала исследования изучают рост на второй среде накопления, производят высев со второй среды накопления на щелочной агар. С чашек отбирают колонии для дальнейшего исследования и пересевают их на среду Кл игл ера.
IV этап. Через 1824 часа после начала исследования отбирают подозрительные колонии с применением пробы на индофенолоксидазу (с помощью реагента или индикаторных бумажек). Подозрительные колонии исследуют в реакции агглютинации на стекле с 01-антисывороткой, а также с сыворотками Огава и Инаба.
Из культур готовят мазки для окрашивания по Граму и далее проводят биохимическую идентификацию выросших бактерий.
7. Зак. 361
Правила забора материала от больного холерой
Сбор материала производится в стерильную стеклянную посуду со средой обогащения (щелочная 1 % пептон-ная вода) при помощи ватных тампонов. Исследуемый материал следует брать до назначения АБ, так как через 12 часа после их приема количество вибрионов уменьшается, а через 13 суток вообще не обнаруживается.
Количество материала зависит от клинических проявлений. При тяжелой форме 0,1 0,5мл на 50мл пеп-тонной воды, при легкой 12 г испражнений.
При исследовании на вибриононосительство предварительно солевое слабительное (чтобы получить жидкие испражнения из верхних отделов кишечника).
В лабораторию материал доставляют не позже, чем через 3 часа от момента забора, положительный ответ можно получить через 1848 часов.

















































Билет 15

1. Основные виды микроскопии м/о, их суть ( световая, люмпппецен тная, темнопольная, фазово- контраетная, электронная), практическое применение
Виды микроскопии и их основные характеристики
Микроскопические методы исследования применяются для изучения
формы микробов, структуры бактериальной клетки и определении
подвижности бактерий.
1) Световая микроскопия. Основана на прохождении луча света через систему линза, за счет чего обеспечивается увеличение объекта в 300 раз.
2) Иммерсионная микроскопия. Основана на использовании
иммерсионного масла, преломляющая способность которого равна
преломляющей способности стекла. За счет этого световые лучи не
рассеиваются, как в световом микроскопе, а попадают в объектив,
обеспечивая хорошее освещение.
3) Фазово-контрастная микроскопия. Основана на превращении изменений по фазе, возникающая при расхождении луча света через прозрачные объекты.
4) Темнопольная микроскопия. Основана на дифракции света при
сильном освещении взвеси мельчайших частиц в жидкости.
5) Люминесцентная микроскопия. Основана на воздействии действии
флюорохромов на клеточные компоненты бактерий.
6) Электронная микроскопия. Основное отличие электронной от
световой микроспории заключается в том, что в нем вместо света
используется быстрый поток электронов, а стеклянные линзы
заменены электромагнитными полями.
Разрешающая способность микроскопа – минимальное расстояние между двумя точками, на котором они воспринимаются раздельно. Для светового микроскопа рс=0,2 мкм.
Степень увеличения микроскопа – это произведение увеличения линз окуляра на увеличение линз объектива.
2. АГ: определение, хим. Природа, строение, виды, свойства
В осуществлении иммунной защиты участвуют 3 вида клеток: фагоциты, Т- и В-лимфоциты. Деятельность этих клеток направлена на распознавание и уничтожение чужеродных агентов антигенов.
Свойства антигенов
Антигены обладают двумя основными свойствами:
1) антигенностью. Это способность вызывать в организме выработку антител.
Антигенность вещества зависит от его чужеродности, от величины и сложности строения молекулы, от его растворимости. Все эти свойства присущи белкам или белковой части антигена;
2) специфичностью выражается в способности антигенов взаимодействовать только с теми антителами, которые выработались в ответ на введение данного антигена. Специфичность антигена определяется небольшим участком молекулы детерминантной группой. Количество этих групп может быть разным. Их функции выполняют углеводы, пептиды, липиды, нуклеиновые кислоты.
3. возбудитель туляремии




























































Билет 16
1. Вирусы: определение, морфология, ультраструктура, классификация.
Вирусы это организмы, не способные существовать и размножаться самостоятельно. В определении вируса подчеркивается особая природа их паразитизма, который можно назвать паразитизмом на генетическом уровне. Тот факт, что вирусы способны выживать и размножаться только внутри других клеток, объясняется не отсутствием собственной клеточной организации, а их потребностью в поступлении готовых источников питания. Если бактерии обладают способностью расти и размножаться на искусственных питательных средах, то вирусы, напротив, как настоящие клеточные паразиты, полностью зависят от обмена веществ в клетке-хозяине. Сейчас уже доказано, что отношение вирусхозяин не ограничивается лишь питанием, а носит более сложный характер.
Когда стали возможны современные методы исследования, с помощью электронного микроскопа удалось выявить детали структуры вирусов.
От бактерий вирусы отличаются простотой строения. Они состоят из нуклеиновой кислоты и белковой оболочки, которая называется «капсид». Нуклеиновые кислоты представляют собой необходимый элемент живой материи, главное
назначение которого сохранять и переносить наследственную, или генетическую, информацию. Нуклеиновая кислота состоит из большого числа структурных единиц нуклеотидов. Каждый нуклеотид состоит из трех основных частей: молекулы фосфорной кислоты, молекулы сахара и молекулы органического основания. Органические основания представлены следующими веществами: цитозином, тимином, урацилом, аденином и гуанином. По типу сахара, содержащегося в нуклеиновых кислотах, различают два вида кислот. В одной из них нуклеотиды содержат рибозу, и тогда кислота называется рибонуклеиновой (РНК), а в другой дезоксирибозу и кислота называется дезоксирибонуклеино-вой (ДНК). Вирусы всегда содержат лишь одну из двух кислот: либо РНК, либо ДНК. В бактериях и других живых клетках ДНК в основном содержится в ядре, а РНК локализуется в цитоплазме и ядрышке клетки. Нуклеиновые кислоты вирусов состоят из одной или двух спиралей.
Вирусы способны поражать многие живые организмы: бактерии, растения, человека и животных. Например, цветковые растения являются хозяевами для многих типов вирусов. Наука фитопатология занимается в том числе изучением вирусных болезней картофеля, бобов, свеклы, сахарного тростника и других сельскохозяйственных культур.
Среди беспозвоночных вирусные болезни обнаружены только у насекомых. Среди позвоночных известны вирусные заболевания у рыб, амфибий (опухоль почки у леопардовой лягушки). Многие вирусные заболевания известны у птиц (саркома и лейкозы служат излюбленной моделью при изучении вирусной природы опухолей). К вирусным заболеваниям человека относятся: грипп, корь, полиомиелит, бешенство, краснуха и многие другие.
2. АГ м/о
Антигены многих микроорганизмов уже хорошо изучены (у сальмонелл, эшерихий, шигелл). У бактерий различают несколько видов антигенов:
1) групповые. Являются общими для двух или более видов микробов. Например, возбудители брюшного тифа имеют общие групповые антигены с возбудителями парати-фов А и В;
2) специфические антигены имеются только у данного вида микроорганизма. Знание специфических антигенов позволяет дифференцировать микробов внутри рода и вида.
Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 1500 типов сальмонелл. По локализации антигенов в микробной клетке различают:
1) соматические, О-антигены связаны с телом микробной клетки. О-антиген высокотоксичен (является эндотоксином грамотрицательных микроорганизмов), термостабилен (не разрушается даже при кипячении). Однако соматический антиген разрушается под действием формалина и спиртов;
2) жгутиковые, Н-антигены имеют белковую природу и находятся в жгутиках подвижных микроорганизмов. Н-антигены быстро разрушаются при нагревании;
3) капсульные, К-антигены расположены на поверхности микробной клетки и называются еще поверхностными. Наиболее детально эти антигены изучены у кишечной группы бактерий. У них различают Vi-, M-, В-, L- и А-антигены. При иммунизации человека коплексом Vi-антигена наблюдается высокая степень защиты против брюшного тифа. Наибольшая термостабильность характерна для группы А они не разрушаются даже при длительном кипячении. Группа В выдерживает нагревание до 60°С около 1 часа, группа L быстро разрушается при такой же температуре.
Антигенными свойствами обладают также бактериальные токсины, ферменты, белки, которые секретируются бактериями в окружающую среду. При взаимодействии со специфическими антителами эти антигены теряют свою активность.
По иммуногенности антигены бывают полноценными и неполноценными.
Полноценные антигены обладают способностью вызывать образование антител в организме и вступают с ними в специфическое взаимодействие. Такие антигены имеют большую молекулярную массу, большой размер молекулы и хорошо взаимодействует с факторами иммунитета. Результат этого взаимодействия можно наблюдать в пробирке. Под влияни-
ем антител микробы могут склеиваться и оседать на дно пробирки, эта реакция называется реакцией агглютинации.
Неполноценные антигены обладают низкой иммуноген- ] ностью и не вызывают образования антител в организме, но они становятся полноценными, если соединятся с белками ] организма.
Существует несколько путей проникновения антигенов в
макроорганизм:
Ф через кожные покровы и слизистые оболочки в результате их повреждения (укусы насекомых, ранения, микротравмы и т. д.); путем всасывания в ЖКТ;
* межклеточно (при незавершенном фагоцитозе, при внутриклеточном паразитировании микроорганизм может разноситься по всему организму). Проникнув в организм, микроб разносится по всем органам и тканям с током крови или лимфы. Процесс проникновения антигена и его контакт с иммунной системой протекают поэтапно, постепенно.
3. Возбудитель столбняка

Билет 17
1. Основные стадии репродукции вируса в клетке хозяина. Особенности репродукции ЖК-вирусов
Взаимодействие вируса с клеткой хозяина это сложный многоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки. В результате такого взаимодействия развивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции. При п р.о дуктивной форме происходит размножение, точнее репродукция (лат. reproduceвоспроизводить) вируса, при абортивной ее нарушение на одном из этапов, при и н-тегративной интеграция вирусной нуклеиновой кислоты в клеточный геном.
РЕПРОДУКЦИЯ ВИРУСОВ
Как отмечалось выше, вирусы являются самореплицирующейся формой, неспособной к бинарному делению, в отличие от микроорганизмов с клеточной организацией. В 50-х годах было установлено, что размножение, или репродукция, вирусов происходит путем репликации их нуклеиновой кислоты и биосинтеза белков с последующей самосборкой вириона. Этот процесс происходит в разных частях клетки ядре или цитоплазме,
вследствие чего получил название дизъюнктивного, т. е. разобщенного размножения.
Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.
1-я стадия адсорбция характеризуется прикреплением вириона к клеточным рецепторам, представляющим собой глико-протеины клеточной мембраны, содержащей нейраминовую кислоту. Такие рецепторы имеются у ряда клеток, в частности эритроцитов, на которых адсорбируются1 многие вирусы. Для орто- и парамиксовирусов специфическими рецепторами являются гликолипиды, содержащие сиаловую кислоту (ганглиозиды), для других белки или липиды клеточной мембраны.
Рецепторами вирусов являются так называемые «прикрепительные» белки, располагающиеся в составе капсидов простых вирионов и суперкапсидов сложных вирионов. Они могут иметь форму нитей (фибры у аденовирусов) или шипов (глико-протеиновые образования на внешней оболочке орто- и парамик-со-, рабдо-, арено- и буньявирусов).
Первый этап адсорбции определяется неспецифическими силами межмолекулярного притяжения, второй специфической структурной гомологией или комплементарностью рецепторов чувствительных клеток и вирусов.
2-я стадия проникновение вируса в клетку хозяина -происходит путем виропексиса и слияния мембран. Виропексис есть не что иное, как частный случай рецепторного эндоцито-за, который состоит в инвагинации участка плазматической мембраны, где имеются углубления, покрытые рецепторами снаружи, на которых адсорбируется вирус (рис. 5.3). Затем происходит образование вакуоли вокруг вируса, в составе которой он находится в цитоплазме клетки хозяина. Описанный способ проникновения вирусных частиц характерен для аденовирусов, вируса гриппа и др.
Проникновение вирусной частицы в клетку хозяина может произойти и путем слияния мембран (рис. 5.4). В этом случае вирусная оболочка сливается с плазматической мембраной клетки хозяина, в результате чего внутренние структуры («сердцевина») вириона оказываются в цитоплазме зараженной клетки, а при слиянии с ядерной мембраной в клеточном ядре.
3-я стадия «раздевание» вирионов заключается в их деп-ротеинизации и освобождении от суперкапсида и капсида, препятствующих репликации вирусной нуклеиновой кислоты. «Раздевание» вириона начинается сразу же после его прикрепления к клеточным рецепторам и продолжается в эндоцитарной вакуоли и ее слиянии с лизосомами при участии протеолити-ческих ферментов, а также в ядерных порах и околоядерном пространстве при слиянии с ядерной мембраной. 4-я стадия заключается в транскрипции и репликации вирусных геномов. Транскрипция вирусного генома двунитевых ДНК-содержащих вирусов происходит, так же как и клеточного генома, по триаде ДНК->- иРНК>- белок (рис. 5.5, а). Различия касаются только происхождения фермента ДНК-зависимой РНК-полимеразы, необходимой для данного процесса. У вирусов, геном которых транскрибируется в цитоплазме клетки хозяина (например, вирус оспы), имеется собственная вирусспецифичес-кая РНК-полимераза. Вирусы, геномы которых транскрибируются в ядре (папова- и аденовирусы, вирусы герпеса), используют содержащуюся там клеточную РНК-полимеразу II или III.
У РНК-содержащих вирусов транскрипция их генома осуществляется несколькими путями.
1. Вирусы с негативным геномом (минус-нитевые, рис. 5.5, б), к которым относятся орто-, парамиксо- и рабдовирусы (см. табл. 5.1), имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу. Они синтезируют «РНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.
Он находится в составе как однонитевых, так и двунитевых РНК-содержащих вирусов.
У вирусов с положительным геномом к которым относятся пикорна-, тогавирусы и др.,функцию ыРНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы клетки хозяина.
Особняком стоит группа РНК-содержащих ретровирусов,в составе которых имеется обратная транскриптаза, или ревертаза. Уникальность этого фермента состоит в его способности переписывать информацию с РНК на ДНК. Этот процесс назывется обратной транскрипцией
Как отмечалось выше, количество генов в вирусном геноме весьма ограничено. Поэтому для увеличения количества вирусной информации существует своеобразный трансляционный механизм, функционирующий через иРНК, который передает значительно больше информации, чем записано в вирусной нуклеиновой кислоте. Это достигается разными путями, например при транскрипции информации с переписывающихся участков ДНК на «РНК путем сплайсинга (вырезание бессмысленных кодонов и сшивание концов), а также при считывании антико-донами гРНК одной и той же молекулы иРНК с разных нуклеоти-дов. При этом образуются новые триплеты, увеличивающие количество транслируемой информации.
Регуляция транскрипции осуществляется клеточными и вирус-специфическими механизмами. Она заключается в последовательном считывании информации с так называемых «ранних» и «поздних» генов. В первых закодирована информация для синтеза вирусспецифических ферментов транскрипции и репликации, во вторых для синтеза капсидных белков.
Вирусспецифическая информация транслируется на рибосомы клетки хозяина, которые предварительно освобождаются от клеточных белков и собираются в вирусспецифические полисомы г-еплилацпл пируиныл геномов заключается в синтезе молекул ДНК или РНК, которые накапливаются в фондах этих нуклеиновых кислот, использующихся при сборке вирионов.
Репликация вирусной ДНК происходит на обеих нитях при участии клеточной ДНК-полимеразы. У однонитевых вирусов вначале образуется вторая нить (репликативная форма).
Репликация вирусных РНК происходит только при участии того же вирусспецифического фермента, который катализирует транскрипцию вирусного генома. У плюс-нитевых вирусов репликация РНК практически не отличается от их транскрипции. У минус-нитевых вирусов репликация отличается от транскрипции длиной образовавшихся дочерних молекул РНК. При репликации они полностью соответствуют по своей протяженности материнской нити, а при транскрипции образуются укороченные молекулы ыРНК.
У ретровирусов репликация, так же как и транскрипция ДНК, происходит в составе клеточного генома при участии клеточной ДНК-полимеразы.
5-я стадия сборка вириона состоит прежде всего в образовании нуклеокапсидов. Поскольку синтез вирусных нуклеиновых кислот и белков в клетке происходит в разных структурах клетки, необходима транспортировка составных частей вириона в одно место сборки. При этом вирусные белки и нуклеиновые кислоты обладают способностью узнавать и самопроизвольно соединяться друг с другом. В основе самосборки простых вирионов лежит способность вирусных полипептидов соединяться в капсомеры, которые, располагаясь вокруг осей симметрии, образуют многогранник. В других случаях полипептиды в виде спирали окружают вирусную нуклеиновую кислоту.
Многие простые вирионы собираются на репликативных комплексах мембранах эндоплазматического ретикулума.'У сложных вирионов сборка нуклеокапсида начинается на репликативных комплексах, а затем продолжается на плазматической мембране, с наружной стороны которой располагаются суперкап-сидные гликопротеиды. Затем гликопротеидные и примыкающие к ним с другой стороны нуклеокапсидные участки выпячиваются через клеточную мембрану, образуя почку, как это имеет место у орто- и парамиксовирусов, рабдовирусов. После отделения почки, содержащей нуклеокапсид и суперкапсидные белки, образуются свободные вирионы. Они либо через клеточную плазматическую мембрану проходят во внеклеточное пространство, либо через мембрану эндоплазматического ретикулума проникают в вакуоль эндоплазматической сети. При этом мембранные липиды обволакивают почку, вытесняя из нее белки. Многие ДНК-содержащие вирусы, например вирус герпеса, собираются в ядре клетки на ее мембране, где образуются нуклеокапсиды. Затем они отпочковываются в перинуклеарное пространство, приобретая внешнюю оболочку. Дальнейшее формирование вириона происходит в мембранах цитоплазматического ретику- лума и в аппарате гольджи, ижуда вирус iранспор!ируе1сн на поверхность клетки.
6-я стадия выход вирусных частиц из клетки происходит двумя путями. Простые вирусы, лишенные суперкапсида, например пикорнавирусы, аденовирусы и др., вызывают деструкцию клетки и попадают во внеклеточное пространство. Другие вирусы, имеющие липопротеидную внешнюю оболочку, выходят из клетки путем почкования, в результате чего в течение длительного времени она сохраняет свою жизнеспособность. Такой путь характерен для вируса гриппа и др.
2. AT : химич. Природа, строение, свойства, механизм специфического взаимодействия с АГ
Антитела вырабатываются макроорганизмом при попадании в него чужеродных агентов антигенов. Антитела относятся к глобулиновой фракции крови, поэтому их еще называют иммуноглобулинами и обозначают символом^. Антитела синтезируются плазматическими клетками. Ig относятся к факторам специфического гуморального иммунитета: инактивируют токсины; в комплексе с комплементом препятствуют проникновению вирусов и лизируют бактерии; активизируют фагоцитоз; участвуют в аллергических реакциях; участвуют в деструкции гельминтов.
В плазме крови содержится около 5 % белков из них 3% составляют иммуноглобулины. Иммуноглобулины раз-
личаются по структуре, антигенному составу и по выполняемым ими функциям. По этим свойствам они разделены на 5 классов: IgG, IgM, IgA, IgE, IgD. Ig обнаруживаются в сыворотке крови в таких количествах: IgG 720 гл, IgA 0,75 гл; IgM 0,52 гл; IgD и IgE очень мало.
Химическая природа иммуноглобулинов
Молекулы иммуноглобулинов всех пяти классов имеют универсальное строение. Если молекулу иммуноглобулинов обработать меркаптоэтанолом, то она распадется на две пары полипептидных цепей: две тяжелые и две легкие. На легкой цепи до 200 аминокислотных остатков, а на тяжелой до 400. Каждая из этих цепей закручена в первичную спираль а-спираль и каждая из цепей имеет вторичную спираль домены. На каждой из легких цепей локализуется по 2 домена, а на каждой тяжелой цепи по 4 домена. Легкие и тяжелые цепи соединяются между собой дисульфидными связями, образуя единую молекулу. Легкие и тяжелые цепи состоят из постоянного набора аминокислот, а также в некоторые домены входит вариабельный набор аминокислот, которые участвуют в образовании активного центра иммуноглобулинов. Ig обладают выраженной специфичностью вариабельный домен подходит к антигену, как ключ к замку. Молекула любого иммуноглобулина имеет четвертичную структуру.
1. Иммуноглобулины класса G (IgG) эти антитела являются наиболее важными в развитии иммунитета, так как на его долю приходится 80% всех сывороточных иммуноглобулинов. В начале заболевания их мало, но по мере развития болезни количество их увеличивается и основная функция борьбы с микробами выпадает на их долю. Иммуноглобулин легко проходит через плацентарный барьер и обеспечивает гуморальный иммунитет новорожденного в первые месяцы жизни.
2. Иммуноглобулины класса М (Ig M) это самая крупная молекула из всех пяти классов иммуноглобулинов. Ig пентамер, который построен из 5 молекул. В состав молекул входят 2 легкие цепи и тяжелая цепь. Молекула этого иммуноглобулина в 5 раз больше, чем IgG, поэтому скорость его оседания будет выше. Иммуноглобулины этого класса первыми появляются при развитии плода и последними исчезают в старости.
3. Иммуноглобулины класса A (IgA) играют важную роль в защите слизистых оболочек дыхательных и пищеварительных трактов, мочеполовой системы. В молекуле IgA те же легкие цепи и своя собственная тяжелая цепь. Существует в модификации секреторный IgA и сывороточный. Секреторный иммуноглобулин активирует комплемент и стимулирует фагоцитарную активность в слизистых оболочках. Сывороточный иммуноглобулин класса А может быть неполным антителом, не связывает комплемент и не проходит через плацентарный барьер. Молекулярная масса варьирует.
4. Иммуноглобулины класса Е (IgE) или реагиновые антитела, так как принимают участие в аллергических реакциях по типу реакций немедленного типа, а также участвуют в деструкции гельминтов. Обнаруживаются в сыворотке крови в небольших количествах. Через плацентарный барьер не проходит.
Иммуноглобулины класса Д (IgD) участие его недостаточно изучено. Содержится в сыворотке крови в очень малых количествах. Известно, что IgD продуцируют клетки миндалин и аденоидов. IgD не связывает комплемент, не проходит через плацентарный барьер. Специфичность иммуноглобулинов проявляется в специфичности иммунного ответа, поэтому в практической медицине используются различные препараты для профилактики и лечения различных заболеваний. Специфичность иммуноглобулинов проявляется в иммунологических реакциях in vitro (реакции преципитации и т. д.).
3. Возб-ль ботулизма
Относится к роду Clostridium, был открыт в Голландии Э. ван Эрменгемом в 1896 г. Возбудитель был выделен из ветчины, послужившей источником отравления 34 человек.
Морфологические и культуральные свойства. С. botulinum это палочки с закругленными концами, имеют жгутики, хотя считаются слабоподвижным микроорганизмом. При попадании в неблагоприятные условия образуют споры. Строгие анаэробы. Молодые культуры окрашиваются грамположительно, 5-суточные грамотрицательно. Выращиваются в обычных средах рН 7,37,5. На глюкозо-кровяном агаре образуют мелкие сероватые или желтоватые мутные колонии неправильной формы. На желатине возбудители образуют круглые прозрачные колонии, на кровяном агаре зоны гемолиза. В печеночном бульоне клостридии ботулизма образуют равномерное помутнение, затем появляется осадок на дне и бульон просветляется.
Ферментативные свойства. Клостридии ботулизма образуют желатиназу, лецитиназу, сероводород и аммиак, а также летучие амины, алкоголи, уксусную, молочную и масляную кислоты. Ферментируют с образованием кислоты глюкозу и мальтозу.
Антигенная структура. Установлено наличие 8 серова-ров возбудителя ботулизма А, В, С,, С2, D, E, F и L. Каждый серовар характеризуется специфической иммуногеннос-тью. Имеют О-антиген, который является общим для всех сероваров.
Резистентность. Вегетативные формы возбудителя ботулизма погибают при 80°С за 30 мин. Споры выдерживают кипячение от 1,5 до 6 часов, при t - 115°С они погибают через 3040 мин, при 120РС через 320 мин. В больших кусках мяса и банках большой емкости они могут оставаться живыми и после их автоклавирования при 120°С в течение 15 мин. В 5% растворе фенола споры сохраняются сутки. Бо-тулинический экзотоксин при кипячении разрушается в течение 10 мин, устойчив к действию солнечного света.
Эпидемиология. С. botulinum широко распространен в почве. Заболевание регистрируют повсеместно. Человек заражается ботулизмом при употреблении в пищу мясных и рыбных продуктов, овощных консервов, кур, уток и других продуктов, инфицированных возбудителями ботулизма.
Клинические проявления. При ботулизме инкубационный период варьирует от 2 часов до 10 суток, чаще всего 1824 ч. Проявления зависят от природы продукта, ставшего причиной отравления, количества токсина, поступившего в организм. Патологический процесс обусловливается экзотоксином, который всасывается через кишечник, поступает в кровь, поражает ядра продолговатого мозга, сердечно-сосудистую систему и мышцы. Первыми признаками заболевания являются расстройства ЖКТ (тошнота, рвота, боли в животе), часто больные жалуются на сухость во рту. На фоне этого развивается головная боль, нарушение глотания, расширение зрачков, двоение предметов, глухота. Очень часто (4060%) болезнь заканчивается летальным исходом.
После перенесенного заболевания остается непродолжительный иммунитет.
Профилактика. Для экстренной профилактики используется поливалентная лошадиная сыворотка, выпускаемая в сухом и жидком виде. Для предупреждения ботулизма большое значение имеет правильная технология обработки продуктов, консервов (особенно в домашних условиях). Опасны продукты домашнего копчения и соления, а также консервированные грибы. Необходимо помнить, что клостри-дии ботулизма, сохранившиеся после стерилизации, вызывают вздутие банок (бомбаж). Содержимое их издает запах прогорклого масла. Такие консервы нельзя выпускать в продажу, они подлежат изъятию и тщательному исследованию.

Билет 18
1. Бактериофаги : определение, история открытия, морфология и ультраструктура на примере Т- четных бактериофагов кишечной палочки, свойства, лизогенная конверсия, лизогения, практическое использование
В 1917 г. французский микробиолог Д'Эррель изучал возбудителя дизентерии, наблюдал лизис бактериальной культуры при внесении в нее фильтрата испражнений больных людей.
Лизирующее начало сохранялось при многократном пассировании культуры дизентерийных бактерий и даже становилось более активным. Агент, растворяющий бактерии, автор называл бактериофагом («пожиратель» бактерий от лат. pha-gos пожирающий), а действие бактериофага, заканчивающееся лизисом бактерий, феноменом бактериофагии.
Вместе с тем Д'Эррель правильно оценил биологический смысл открытого им феномена. Он высказал предположение, что бактериофаг является инфекционным агентом, лизирующим бактерии, вследствие чего в окружающую среду поступают дочерние фаговые частицы. На твердых средах, засеянных смесью фага с бактериальной культурой, в местаЗс лизиса бактерий появляются стерильные пятна или негативные колонии фагов. Посев этой же бактериальной культуры на жидкую среду приводит к просветлению среды. Позднее было показано, что фаги являются бактериальными вирусами, имеющими в качестве хозяев бактерии определенных видов. Номенклатура бактериофагов основана на видовом наименовании хозяина. Например, фаги, лизирующие дизентерийные бактерии, получили название дизентерийных бактериофагов, сальмонеллы сальмонеллезных бактериофагов, дифтерийные бактерии дифтерийных бактериофагов и т. д.
В истории микробиологии изучение феномена бактериофагии занимает особое место. Простота культивирования, короткий период генерации, высокий выход фагового потомства и возможность точного его количественного учета способствовали успешному изучению многих проблем молекулярной генетики и общей вирусологии. В частности, в системе фаг бактериальная клетка впервые было открыто явление ли-зогении, получившее позднее название интегративной инфекции.
Структура. Большинство фагов имеют сперматозоидную форму. Они состоят из головки, которая содержит нуклеиновую кислоту, и отростка. У некоторых фагов отросток очень короткий или вовсе отсутствует. Размеры фаговой частицы колеблются от 20 до 200 нм. Средний диаметр головки равен 60100 нм, длина отростка 100200 нм.
Различают несколько морфологических типов бактериофагов (рис. 5.9.). К I типу относятся нитевидные ДНК-содержащие фаги, которые лизируют клетки бактерий, несущих F-плазмиду
(см. 6.7). II тип составляют фаги с аналогом отростка. Это мелкие РНК-содержащие фаги и однонитевой ДНКфаг ф/174. К III типу относятся фаги ТЗ, Т7 с коротким отростком, к IV типу фаги с несокращающимся чехлом отростка и двуните-вой ДНК (Tl, T5 и др.). V тип представляют ДНК-содержащие фаги с сокращающимся чехлом отростка, заканчивающимся базальной пластинкой разной формы (Т2, Т4, Т6).
Наиболее изучены Т-фаги (англ, type типовые). Они составляют Т-группу коли-дизентерийных фагов, включающую 7 представителей: 4 нечетных Т1, ТЗ, Т5 и Т7 и 3 четных Т2, Т4, Т6. Наиболее сложной оказалась структура Т-четных фагов, в частности Т2 (см. рис. 5.9). Он состоит из головки гексагональной формы и отростка. Последний образован полым стержнем диаметром около 8 нм. Снаружи стержень окружен чехлом, способным к сокращению. На дистальном конце отростка имеется шестиугольная базальная пластинка, в углах которой располагаются короткие зубцы. От каждого зубца отходит по одной нити длиной 150 нм. Базальная пластинка и нити осуществляют процесс адсорбции фага на бактериальной клетке.
Химический состав. Фаги, как и другие вирусы, состоят из нуклеиновой кислоты и белка. Большинство их них содержат двунитевую ДНК, которая замкнута в кольцо. Однако существуют и однонитевые фаги, например фаг ф%174. В составе некоторых фагов обнаружены ДНК с необычными азотистыми основаниями. Так, у фага Т2 вместо цитозина содержится 5-ок-симетилцитозин. Некоторые фаги содержат РНК.
Капсид головки фага и чехол отростка построены из полипептидных субъединиц по кубическому (головка) и спиральному (отросток) типу симметрии.
В частицах некоторых фагов под чехлом дистальной части отростка (фаг Т2) содержится фермент лизоцим. Внутри головки у фага Т2 обнаружен внутренний белок, в состав которого входят полиамины (спермин, путресцин). Этот белок играет определенную роль в суперспирализации фаговой ДНК, которая только в таком виде может разместиться в сравнительно небольшой головке.
Резистентность к факторам окружающей среды. Фаги более устойчивы к действию физических и химических факторов, чем многие вирусы человека. Большинство из них инактивируются при температуре свыше 65°70 °С. Они хорошо переносят замораживание и длительно сохраняются при низких температурах и высушивании. Сулема (0,5% раствор), фенол (1 % раствор) не оказывают на них инактивирующего действия. В то же время 1 % раствор формалина инактивирует фаг через несколько минут. Ультрафиолетовые лучи и ионизирующая радиация также вызывают инактивирующий эффект, а в низких дозах мутации.
Взаимодействие фагов с бактериальной клеткой характеризуется последовательной сменой тех же стадий, которые были рассмотрены для вирусов животных и человека. Однако имеются и некоторые особенности.
Адсорбция фага на бактериальной клетке происходит только при соответствии фаговых рецепторов, расположенных на конце отростка, с рецепторами бактериальной клетки, связанными с клеточной стенкой. Некоторые фаги адсорбируются на половых ворсинках (sex pili), контролируемых F- или R-плаз-мидами (см. 6.7). На бактериях, полностью лишенных клеточных стенок (протопласты), адсорбции фагов не происходит.
На адсорбцию фагов большое влияние оказывают состав и рН среды, температура, а также наличие некоторых аминокислот или других соединений, например триптофана для фага Т2.
Проникновение фага в бактериальную клетку происходит путем инъекции нуклеиновой кислоты через канал отростка. При этом, в отличие от вирусов человека и животных, капсидные белки головки и отростка остаются вне клетки.
Некоторые фаги вводят свою ДНК без предварительного повреждения клеточной стенки бактерий, другие сквозь отверстия, которые они пробуравливают в клеточной стенке с помощью лизоцима, содержащегося в их капсиде.
Однонитевая ДНК фага ф^174, а также нуклеиновая кислота нитчатых фагов проходят в клетку вместе с одним из кап-
сидных белков.
Репликация фаговой нуклеиновой кислоты и синтез фагоспецифических ферментов транскрипции и репликации происходят примерно так же, как и при репродукции других вирусов. Однако латентный период инфекции, т. е. время для формирования фагового потомства, значительно короче.
Сборка фаговых частиц, или морфогенез, заключается в заполнении фаговой ДНК пустотелых капсид головки.
Выход зрелых фагов из бактериальной клетки происходит путем «взрыва», во время которого зараженные бактерии лизируются. Лизис происходит при участии фагового ли-зоцима либо без него. Некоторые ДНК-содержащие нитчатые фаги (например, фаг fd) освобождаются из клетки путем «просачивания» ДНК через цитоплазматическую мембрану и клеточную стенку бактерии, во время которого они приобретают капсиды. Бактериальная клетка при этом сохраняет свою жизнеспособность.
Лизогенизация лежит в основе фаговой или лизогеннрй конверсии. Она заключается в изменении свойств у лизогенных бактерий, например приобретении способности продуцировать токсин, изменять морфологию, антигенные другие признаки. Механизм этого явления связан с внесением новой информации в бактериальную клетку.
2. Иммунитет: определение, формы, виды и их хар-ка
Еще в древние времена было замечено, что человек, который перенес инфекционное заболевание, становится к нему невосприимчивым и повторно не болеет. В средние века людей, переболевших чумой, холерой, привлекали к уходу за больными или к захоронению умерших. Впервые английский врач Э. Дженнер использовал искусственное заражение человека для предохранения его от заболевания оспой. Затем Л. Пастер предложил прививки против бешенства и сибирской язвы. Изучение явлений иммунитета позволило создать вакцины, получить лечебные сыворотки и гамма-глобулины.
В процессе эволюции у человека сформировалась специальная система защиты организма от чужеродных веществ и микроорганизмов, вызывающих заболевания. Эта система называется иммунной системой. Она представлена лимфо-идной тканью и выполняет функции специального надзора, т.е. распознает чужеродные вещества, генетически чуждые макроорганизму. Чужеродные агенты, попадающие в наш организм, называются «антигенами». К ним относятся вещества белковой природы; соединения белков липидов и полисахаридов, микробы и их токсины; вирусы и т. д. А не-
восприимчивость организма к чужеродным веществам (антигенам) называется «иммунитетом» (от лат. Immunitas освобождение, избавление от чего-либо).
Иммунный надзор играет важную роль в нормальном функционировании организма, предохраняет от различных болезней инфекционной и неинфекционной природы.
Изучением функционирования иммунной системы, а также разработкой средств и методов иммунологической диагностики, профилактики и лечения инфекционных и неинфекционных болезней занимается иммунология наука об иммунитете. Иммунология как наука сформировалась лишь в конце XIX в. Основоположниками ее можно считать И.И. Мечникова, Л. Пастера и П. Эрлиха.
Существуют различные классификации видов и форм иммунитета. Наиболее простая классификация:
1) естественный иммунитет:
а) врожденный иммунитет;
б) приобретенный иммунитет;
в) пассивный иммунитет новорожденных;
2) искусственный иммунитет:
а) активный иммунитет;
б) пассивный иммунитет.
1. Естественный врожденный иммунитет является наиболее прочной формой невосприимчивости, которая обусловливается врожденными, биологическими особенностями данного вида. Например, человек не болеет чумой рогатого скота или куриной холерой. Животные не болеют заболеваниями человека: дифтерией, сифилисом и др. Эти свойства невосприимчивости к тем или иным заболеваниям передаются потомству по наследству. Поэтому мы говорим о врожденном иммунитете.
Естественный приобретенный иммунитет возникает после того, как человек перенес инфекционную болезнь, поэтому
этот иммунитет также называют постинфекционным. Приобретенный иммунитет индивидуален и по наследству не передается. Если человек в детстве переболел эпидемическим паротитом (свинкой), то это не значит, что его дети не будут болеть этим заболеванием. Длительность приобретенного иммунитета различна и зависит от вида возбудителя. Например, после перенесения одних заболеваний в организме человека образуется длительный, пожизненный иммунитет (чума, эпидемический паротит, коклюш, туляремия и др.), а после перенесения других заболеваний остается непродолжительный, кратковременный иммунитет. Такими инфекциями человек может болеть несколько раз (грипп А, гонорея, ангина и др.).
Невосприимчивость к инфекции возникает не только при выраженной форме заболевания, но и при бессимптомных формах течения болезни.
Пассивный иммунитет новорожденных обусловлен передачей особых защитных веществ-антител из организма матери плоду через плаценту или ребенку через грудное молоко. Продолжительность такого иммунитета невелика, всего несколько месяцев, но его роль для здоровья ребенка очень важна. Уже точно доказано, что дети, находящиеся на грудном вскармливании, болеют гораздо реже, чем те, которые вскармливаются искусственно.
2. Искусственный иммунитет его создают в организме человека искусственным путем, чтобы предупредить возникновение инфекционной болезни, а также используют для лечения инфекционных болезней. Различают активную и пассивную формы искусственного иммунитета: активный иммунитет создают у человека путем введения вакцин или анатоксинов. Активный иммунитет может быть напряженным и длительным. Пассивный иммунитет создается путем введения в организм человека иммунных сывороток, в которых содержатся
иммунные антитела. Пассивный иммунитет сохраняется недолго, около месяца, до тех пор, пока сохраняются антитела в организме. Затем антитела разрушаются и выводятся из организма. В зависимости от локализации иммунитет может быть общим и местным. Местный иммунитет осуществляет защиту кожных покровов и слизистых оболочек, а общий иммунитет обеспечивает иммунную защиту внутренней среды организма человека. Деление иммунитета на различные виды и формы очень условно, так как защиту организма осуществляют одни и те же системы, органы и ткани. Их функция направлена на то, чтобы поддерживать в организме постоянное нормальное состояние. Защитные факторы, которые обусловливают невосприимчивость человека к заболеваниям, могут быть специфическими и неспецифическими.
3. Возб-ли лептоспирозов
Mycobacterium tuberculosis Mycobacterium bovis Mycobacterium avium
Билет 19
1. Получение энергии путем субстратного фосфорилнровапия ( брожение)
Аэробные бактерии в процессе дыхания окисляют различные органические вещества (углеводы, белки, жиры, спирты, органические кислоты и пр.).
Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое мол очно-кислыми бактериями, масляно-кислое и пр.
2.иммунная система человека, иммунекомпетентные клетки : определение, виды, функции
Иммунитет антибактериальный, антивирусный, антитоксический и т. д. обеспечивает иммунная система в целом.
Как видно из схемы, иммунная система подразделена на центральные и периферические органы. В периферических органах происходит адекватный иммунный ответ на присутствие антигенов. Селезенка орган, через который фильтруется кровь. Селезенка находится в левой подвздошной области и имеет дольчатое строение. Лимфоидные скопления заселены Т-, В-лимфоцитами и плазматическими клетками. Лимфоциты распознают генетически чужеродные молекулы и клетки, участвуют в регуляции иммунного ответа, формировании гуморального и клеточного иммунитета.
Компоненты иммунной системы
Органы и ткани иммунной системы
1) центральные: костный мозг; тимус
2) периферические: селезенка;
лимфатические узлы; скопление лимфоидной ткани в слизистых
Клетки иммунной системы
иммунокомпетентные обеспечивают специфичность иммунологических реакций;
1) Т- и В-лимфоциты;
2) макрофаги;
3) дентритные клетки
Гуморальные факторы иммунологической активности
осуществляют неспецифическую функцию уничтожения:
1) третья популяция лимфоцитов К-клетки (киллеры) NK (нормальные киллеры)
2) макрофаги;
3) нейтрофилы;
4) эозинофилы
1) иммуноглобулины;
2) цитокины (регулирующие факторы);
3) комплемент
Кровь также относится к периферическим органам иммунитета. В ней находятся Т- и В-лимфоциты, фагоциты, лейкоциты.
1 клетки вещества. Основными клетками лимфы являются лимфоциты.
торые отвечают за синтез иммуноглобулинов всех пяти классов, участвуют в формировании гуморального иммунитета. На долю этих клеток приходится 15% всей лимфоидной популяции. В организме могут жить до 10 и более лет. Лимфатические узлы мелкие анатомические образования, бобовидной формы, которые располагаются по ходу лимфатических сосудов. Каждый участок тела имеет региональные лимфатические узлы. В организме человека находится около 1000 лимфатических узлов. Через них фильтруется лимфа, задерживаются и концентрируются различные антигены. В пределах узла включается система специфического иммунного реагирования, направленная на обезвреживание антигена. Лимфа жидкая ткань, которая находится в лимфатических сосудах и узлах. Так как клетки организма с кровью не соприкасаются, каждая клетка омывается лимфой, в которой содержатся необходимые для
В-лимфоциты это иммунокомпетентные клетки, ко-
3. Т-супрессоры ингибируют активность Т-лимфоцитов или В-лимфоцитов, препятствуют чрезмерному развитию иммунных реакций.
л ера определяются молекулы СД8.
| уничтожают клетки. На поверхности мембраны Т-кил-
| 2. Т-цитотоксические (киллеры) распознают антигены и
| сти мембраны Т-хелпера определяются молекулы СД4.
| верхности антигенпредставляющих клеток. На поверхно-
1 . Т-хелперы распознают несущую часть антигена на по-
Т-лимфоциты обеспечивают клеточные формы иммунного ответа. Среди Т-лимфоцитов выделяют 3 основные популяции:
В осуществлении иммунной защиты участвуют 3 вида клеток: фагоциты, Т- и В-лимфоциты. Деятельность этих клеток направлена на распознавание и уничтожение чужеродных агентов антигенов.
3. Возб-ли туберкулеза
В состав рода включены тонкие, ветвящиеся палочки; спирто-кислото-щелочеустойчивые, аэробные, грам+ бактерии. В род микобактерий входят возбудители туберкулеза и лепры, а также сапрофитов, распространенных в окружающей среде. Из патогенных микобактерий выделено 5 групп: М. tuberculosis, M. bovis, M. microti, M. leprae, М. lepraemirium.
M. tuberculosis Микобактерий туберкулеза человека были открыты Р. Кохом в 1882 г. В честь этого открытия возбудитель туберкулеза до сих пор называют палочкой Коха. Это заболевание известно людям с древних времен. Легочная форма была описана древнегреческим врачом Гиппократом. Тогда эта болезнь не считалась инфекционной, а врач арабского Востока Авиценна считал ее наследственной. Первым связь легочных бугорков с чахоткой увидел Сильвий.
В XVIIIXIX вв. туберкулез унес многие жизни, в том числе и выдающихся деятелей того времени А.П. Чехова, Н.А. Некрасова, Моцарта, Шопена. Инфекционная природа туберкулеза впервые была доказана Вильмёном (1865 г.), а Р. Кохом был выделен возбудитель в чистом виде.
Морфологические и культуральные свойства. Микобак-терии туберкулеза характеризуются полиморфизмом. Это тонкие, длинные, слегка изогнутые палочки. Иногда имеют небольшие вздутия на концах. В молодых культурах палочки более длинные, а в старых склонны к простому ветвлению. Иногда образуются короткие, толстые палочки. Неподвижны, грамположительны, не образуют спор и капсул. Ми-кобактерии в связи с высоким содержанием миколовой кислоты и липидов в клеточной стенке плохо окрашиваются обычными методами, поэтому для их выявления применяют окраску по ЦилюНильсену: палочки окрашиваются в ярко-красный цвет на голубом фоне.
На поверхности клеток имеются микрокапсулы. Электронной микроскопией на концах клеток выявлено наличие гранул и вакуолей. Цитоплазма молодых культур гомогенная, старых зернистая. Кислотоустойчивость объясняется наличием у туберкулезных микобактерий большого количества миколовой кислоты и липидов.
Туберкулезная палочка это очень медленнорастущий микроорганизм; требовательна к питательным средам, гли-церинзависима. Аэробы, но способны расти и в факультативно анаэробных условиях. Крайние температурные пределы 2540°С, opt 37°С. Реакция среды почти нейтральная (рН 6,47,0), но может расти в пределах рН 4,58,0. Для лучшего роста микобактерий в среды добавляют витамины (биотин, никотиновая кислота, рибофлавин), а также ионты (Mg2+, K+, Na+, Fe2+). Для выращивания часто используют плотные яичные среды, глицериново-картофельный агар, а также синтетические и полусинтетические жидкие среды (например, жидкая среда Сотона). На жидких средах туберкулезная палочка образует через 57 суток сухую морщинистую пленку, поднимающуюся на края пробирки. Среда при этом остается прозрачной. На плотных средах туберкулезная палочка образует колонии кремового цвета, напоминающие цветную капусту, крошковатые, плохо снимаются бак-
териологической петлей. Этот рост наблюдают на 1440-е сутки.
Антигенная структура. Реакциями агглютинации и связывания комплемента установлено несколько видов микобактерий: млекопитающих, птиц, холоднокровных, сапро-фитов.
Человеческий вид серологически не отличается от бычьего и птичьего видов. Антиген микобактерий туберкулеза содержит протеины, липиды, фосфатиды и полисахариды. Туберкулин считают антигеном, который при действии на инфицированный туберкулезом организм вызывает местную, очаговую аллергическую реакцию (проба Манту).
Резистентность. По сравнению с другими неспорообра-зующими палочками микобактерий туберкулеза очень устойчивы во внешней среде. В проточной воде они могут сохранять жизнеспособность до 1 года, в почве и навозе 6 мес., на различных предметах до 3 мес., в библиотечной пыли 18 мес., в высушенном гное и мокроте до 10мес. При кипячении палочка Коха погибает через 5 мин, в желудочном соке через 6ч, при пастеризации через 30мин. Микобактерий чувствительны к солнечному свету и активированным растворам хлорамина и хлорной извести.
Эпидемиология. Заболевание туберкулезом носит пандемический характер и распространено повсеместно. Источником инфекции М. tuberculosis является больной человек, основной путь заражения аэрогенный. Человек очень восприимчив к этому заболеванию. Подавляющее большинство населения рано или поздно заражается туберкулезом, но в большинстве случаев заражение вызывает небольшие изменения без наклонности к прогрессирующему развитию болезни. Они даже ведут к повышению устойчивости организмак специфическому иммунитету. Несмотря на это, во всем мире растет заболеваемость туберкулезом. Ежегодно в мире заболевают туберкулезом более 8 млн человек, 95% из них жители развивающихся стран. В 1991 г. Генеральная Ассамблея Всемирной организации здравоохранения (ВОЗ)
была вынуждена констатировать, что туберкулез является международной и национальной проблемой здравоохранения не только в развивающихся, но и в экономически развитых странах. Ежегодно от туберкулеза умирают 3 млн человек, в ближайшие 10 лет могут умереть 30 млн больных. Поэтому сложившаяся ситуация была охарактеризована ВОЗ как кризис глобальной политики в области туберкулеза.
Наблюдаемое в настоящее время в РФ прогрессирование заболеваемости связано с ухудшением социально-экономических условий жизни населения, резко обозначившееся в период 19911992 гг., и сопутствующим дисбалансом в питании (уменьшение потребления белковых продуктов), а также с многочисленными стрессовыми ситуациями, связанными с военными действиями; наплывом беженцев из других республик бывшего СССР. Особую роль в инфицировании туберкулезом играет скученность населения следственные изоляторы, лагеря беженцев, лица «без определенного места жительства». Растет заболеваемость среди «благополучных» слоев населения, имеющего контактные специальности: врачи, учителя, студенты, школьники. Заболеваемости способствует сокращение объема работы по профилактике и раннему выявлению туберкулеза, ухудшение качества и охвата профилактическими осмотрами. В связи с сокращением объемов ранней выявляемое™ туберкулеза, стал расти резервуар туберкулезной инфекции в обществе запущенные, трудно поддающиеся лечению формы заболевания, особенно вызванные лекарственно устойчивыми мико-бактериями.
Патогенез поражений. Туберкулез у человека вызывается двумя основными видами микобактерий человеческим (М. tuberculosis) и бычьим (М. bo vis), реже микобактериями птичьего типа (М. avium). Заражение происходит воздушно-капельным и воздушно-пылевым путем, иногда через рот, при употреблении пищевых продуктов, инфицированных туберкулезными микобактериями, через кожу и слизистые.
Возможно внутриутробное инфицирование плода через плаценту.
При аэрогенном заражении первичный инфекционный очаг развивается в легких, а при алиментарном в мезентеральных лимфатических узлах. В развитии болезни выделяют первичный, диссеминированный и вторичный туберкулез, который является эндогенной реактивацией старых очагов, При низкой сопротивляемости организма и неблагоприятных социальных условиях из места первичной локализации возбудитель может распространиться по всему организму и вызвать генерализованную инфекцию.
В месте проникновения микобактерий или участках, наиболее благоприятных для размножения бактерий, возникает первичный туберкулезный комплекс, состоящий из воспалительного очага (в легких это вневматический очаг под плеврой), пораженных регионарных лимфатических узлов и «дорожки» измененных лимфатических сосудов между ними. Диссеминация микробов может происходить бронхо-, лим-фо- и гематогенно.
Образование первичного комплекса характеризуется развитием гранулем в виде бугорков (бугорчатка или туберкулез). Образование гранулем не имеет характерных особенностей и представляет собой клеточную реакцию. Микобактерий окружают лейкоциты и все это скопление окружено эпителиоидными и гигантскими (многоядерными) клетками. Наиболее часто первичный очаг наблюдают в легких (очаг Гона). При хорошей сопротивляемости организма, микобактерий могут находиться в бугорке несколько лет или всю жизнь. В большинстве случаев первичные очаги заживают с полной деградацией содержимого, его кальцификацией и фиброзом паренхимы. При снижении иммунитета первичные очаги активизируются и прогрессируют с развитием вторичного процесса. Такая реактивация обычно происходит через 2025 лет после первичного инфицирования; обычно ее провоцируют стрессы, нарушение питания и общее ослабление организма. По статистике, 80% людей заболевают ле-
точной формой туберкулеза, остальные 20% туберкулезом других органов и тканей (диссеминированный туберкулез). Встречаются поражения туберкулезом гениталий, костей и суставов, кожи и др.
Клинические проявления. Инкубационный период при туберкулезе сравнительно продолжительный от нескольких недель до 5 лет. Заболевание может развиваться остро: резкая одышка, боли в грудной области. Реактивный туберкулез проявляется кашлем, иногда с кровохарканьем; снижением массы тела; ночным потоотделением; субфебриль-ной температурой тела. Симптомов, специфичных только для туберкулеза, нет, так как туберкулез характеризуется многообразием клинических форм, анатомических изменений.
Иммунитет. Иммунитет при туберкулезе нестерильный, обусловлен наличием в организме Z-форм микобактерий. Приобретенный иммунитет является следствием активации Т-клеток с помощью антигенов микобактерий туберкулеза. Поэтому исход болезни определяется активностью клеточных факторов иммунитета.
Одним из факторов защиты являются бактериофаги, оказывающие действие как на вирулентные, так и на авирулен-тные штаммы туберкулезных палочек.
Методы диагностики туберкулеза:
1. Микроскопирование. Этот метод прост, доступен, позволяет быстро дать ответ. В мазках, окрашенных по Цилю Нильсену, можно выявить красные палочки на голубом фоне. Недостатком этого метода является его небольшая чувствительность (ввиду очень медленного роста микобактерий могут не попасть в мазок, их можно выявить при содержании 100 000500 000 микобактерий в 1 мл материала).
2. При отрицательном микроскопировании применяют микробиологический метод: высев исследуемого материала на питательные среды (обычно ЛевенштайнаЙенсена).
Для простоты выделения в среды добавляют антибиотики, подавляющие рост сопутствующих микроорганизмов. Достоинство этого метода заключается в возможности получения чистой культуры, что позволяет ее идентифицировать и определить чувствительность к лекарственным препаратам. Недостаток медленный рост палочки Коха (от 4 до 14 недель).
3. Обязательным методом обследования является туберку-линодиагностика, основанная на определении чувствительности организма к туберкулину. Микобактерий содержат эндотоксины, которые освобождаются при распаде клеток. Р. Кох в 1890 г. выделил этот токсин и назвал «туберкулином». Имеется несколько препаратов туберкулина. «Старый» туберкулин Коха представляет собой 56-недельную культуру в глицериновом бульоне, стерилизованную текучим паром (100°С) в течение 30 с, выпаренную при 70°С до 110 первоначального объема и профильтрованную через фарфоровые свечи. «Новый» туберкулин Коха высушенные микобактерий туберкулеза, растертые в 50% глицерине до получения гомогенной массы. Туберкулин из микобактерий бычьего типа (М. bo vis) содержит белки, жирные кислоты, липиды. Для постановки реакции Манту (предложена французским ученым в 1908 г.) применяется «новый» туберкулин Коха. Эта реакция ставится внутрикожно. При положительной реакции через 48 часов (у пожилых лиц через 72 ч) в месте введения образуется папула диаметром 10 мм с гиперемиро-ванными краями. Следует знать, что не всегда положительный результат является признаком активного процесса туберкулеза, равно как и отрицательная реакция Манту не всегда указывает на отсутствие процесса, так как у больных с иммунодефицитами реакция обычно отрицательна.
4. Для раннего выявления больных туберкулезом используется рентгенологический (флюорографический с 15 лет) метод диагностики. По действующим директивным до-
кументам периодичность его проведения определяется
эпидситуацией по туберкулезу и группами населения,
подлежащего осмотрам.
Профилактика туберкулеза обеспечивается путем ранней диагностики, своевременного выявления больных и их диспансеризации, обезвреживания молока и мяса больных животных. Профилактика заключается в проведении социальных мероприятий (улучшение условий труда и быта населения, повышение его материального и культурного уровня).
Для иммунопрофилактики используется вакцина БЦЖ аттенуированные микобактерии бычьего типа. В России вакцинацию проводят всем новорожденным. В США только в группах повышенного риска. Иммунизация, как средство профилактики туберкулеза, не оптимальна, и чем более серьезнее складывается эпидситуация по туберкулезу, тем она менее эффективна. Введение последующих ревакцинаций БЦЖ в более старшем возрасте не оказывает влияния на заболеваемость. Поэтому самое главное в специфической иммунизации это защитить детей. После вакцинации на некоторое время отказываются от постановки кожных проб для предупреждения гиперреактивных осложнений (некротические реакции и т. д.).
М. bovis вызывает туберкулез у крупного рогатого скота и в 5% случаях у человека. Крупный рогатый скот заражается туберкулезом аспирационно, при вдыхании инфицированной пыли, а также алиментарно через зараженные корм и воду. Бацилловыделение с молоком часто происходит даже у животных, у которых нет клинически выраженных изменений. В связи с этим большое значение имеет инфицирование человека молоком или молочными продуктами, полученных от больных животных.
Особую опасность туберкулез крупного рогатого скота и птиц представляет для работников животноводства и птицеводства, мясокомбинатов, убойных пунктов, среди которых туберкулез носит выраженный профессиональный характер.
Поражения у людей отличает склонность к осложнениям, генерализации, экссудативным реакциям и бронхогенному метастазированию. Морфологически не отличается от М. tuberculosis. Методы выделения возбудителя также аналогичны микобактериям человеческого типа. М. bovis выделяют у 60 видов млекопитающих, но эпидемиологическую опасность представляют крупный рогатый скот, верблюды, козы, овцы, свиньи, собаки и кошки.
Схема выделения мнкобактернй туберкулеза
Люми-л 'несцентная4
микроскопия
Бактериологический метод
M. leprae возбудитель проказы (лепры или болезни Хансена).
Проказа известна с древности. В средние века она поражала целые селения. К проказе относились с мистическим ужасом, она всегда была окутана покровом тайны. Проказа становилась основой многих литературных сюжетов. О прокаженных писали Стивенсон, Конан-Дойль, Джек Лондон. В средневековой Европе прокаженные отсекались от мира здоровых людей. Необходимость изоляции и сейчас остается основным условием борьбы с проказой. При диагнозе «проказа» человек вынужден порвать с прежней жизнью и поселиться в лепрозории. Начиная с XIV в. заболеваемость проказой в Европе резко снизилась, и сейчас проказа встречается в нескольких странах в виде спорадических случаев. В настоящее время в мире насчитывается около 2 млн больных проказой. Возбудитель открыт норвежским ученым Хансеном (1873 г.).
Морфологические и культу рал ьные свойства. Палочки лепры прямые или изогнутые, концы могут быть заостренными или утолщенными, неподвижные, спор и капсул не образуют, спирте-, кислотоустойчивые, грамполо-жительные.
M. leprae трудно выращивать на питательных средах. Культуры развиваются очень медленно (68 недель), образуют колонии в виде сухого морщинистого налета.
Эпидемиология проказы до конца не изучена. Избирательность заражения не поддается логике. В медицинской литературе описывают случай, когда за больным проказой отцом ухаживала старшая дочь, а заболели средняя и младшая, которые меньше всех контактировали с больным. Поэтому в каждом конкретном случае невозможно выявить путь заражения.
Резервуар инфекции больной человек. Предположительно заражение происходит контактным путем или воз-
душно-капельным. Основным способом борьбы с проказой остается изоляция больных. Ведущая роль в распространении инфекции принадлежит социально-экономическим факторам, о чем свидетельствует высокая заболеваемость в странах третьего мира. В России уровень заболеваемости невысокий. В Липецкой, Иркутской, Ленинградской областях по 1 больному, в Ростовской области 70 человек (Дон является эндемичной по проказе территорией еще с тех времен, когда казаки отправлялись в дальние походы).
Патогенез поражений. Проказой болеют только люди, поэтому источник болезни больной человек. Патогенез обусловлен образованием бугорков (по типу туберкулезных) в различных органах и тканях, куда возбудитель попадает с током крови и лимфы. При хорошей сопротивляемости организма болезнь протекает латентно и может не проявляться в течение жизни. Вероятность заболевания зависит от иммунного статуса организма человека. Тяжелой формой заболевания считается лепро-матозная.
Клинические проявления. Инкубационный период от 3 до 5 лет, иногда затягивается до 20 лет. В начале заболевания общие симптомы интоксикации: лихорадка, слабость, боли в костях и др. Появляются поражения кожи в виде высыпаний, которые представляют четко ограниченные пятна (леприды) разной окраски и размеров. Потом возникают другие симптомы: отсутствие чувствительности к высокой или низкой температуре, к боли.
Если поражения локализуются на лице, то у больных отмечают выпадение бровей и ресниц, а сплошные инфильтраты придают вид «львиного лица», у больного пропадает голос.
Лабораторная диагностика. Материал от больного получают энергичным соскобом слизистой носа, пункции увеличенных лимфатических узлов. Диагностика осуществ-
ляется микроскопированием. Мазки окрашивают по ЦилюНильсену. Также для диагностики применяют ложную пробу с аллергеном М. leprae (лепроминовая проба), которая всегда отрицательна при поражениях лица. Это связано с отсутствием клеточных иммунных реакций.
Лечение. В медицинских кругах бытуют легенды об ученых, прививавших себе лепру, чтобы опробовать испытываемые средства спасения. Однако эксперименты не увенчались успехом: препарата, победившего проказу, нет до сих пор. Часто интенсивная химиотерапия проводится на протяжении всей жизни больного проказой. Основные препараты сульфоны, рифампицин, клофазилин.


Билет 20
1. Типы экологических связей между м/о в ассоциациях : виды симбиоза и антагонизма, применение на практике
Жизнь микроорганизмов находится в тесной зависимости от условий окружающей среды. Как на растения, макроорганизмы, так и на микромир существенное влияние оказывают различные факторы внешней среды. Их можно разделить на три группы: химические, физические и биологические.
2. Межклеточная кооперация иммунокомпетептпых клеток па примере антителогепеза (как одан из форм иммунного ответа
3. Вирус бешенства
Возбудитель бешенства относится к семейству Рабдови-русы. Семейство это включает вирусы бешенства, везикулярного стоматита и другие вирусы, вызывающие заболевания у животных и насекомых.
На протяжении тысячелетий все человечество страдало от этой страшной болезни бешенства. Упоминание об этом заболевании встречается в «Илиаде» Гомера, трудах Аристотеля и Авиценны. В I в. до н.э. римский ученый Цельский предложил выжигать укушенные места каленым железом. Это болезненное мероприятие спасало только в том случае, если рана была невелика и прижигание производилось немедленно после укуса. Существовали и другие средства, но все они оказывались малоэффективными.
Впервые бешенство изучил Л. Пастер в 1880 г.
В 1886 г. группа одесских врачей на свои средства командировала Н. Ф. Гамалея к Пастеру в Париж для ознакомления с методом приготовления вакцины против бешенства. После его возвращения в Одессе была открыта лаборатория, где изготовлялась антирабическая вакцина.
Морфологическая структура. Возбудитель бешенства имеет палочковидную (пулевидную) форму, один конец которой плоский, другой вытянутый. Размер 80180 нм. Вирион содержит однонитчатую РНК, окруженную капси-дом. Снаружи капсид покрыт оболочкой, в состав которой входят гликопротеиды и гликолипиды. В оболочке имеются шиловидные образования (пепломеры).
В цитоплазме пораженных вирусом клеток образуются специфические включения, описанные Бабешем (1892) и Не-гри (1903). Поэтому их называют тельца БабешаНегри. Величина этих телец от 34 до 20 мкм. Они разной формы, чаще сферической, но бывают овальной и многоуголь-
ной. Кислые красители окрашивают их в рубиново-крас-ный цвет.
Тельца БабешаНегри располагаются в цитоплазме нервных клеток головного мозга. Обнаружение этих телец имеет диагностическое значение.
Культивирование. Вирус бешенства культивируется в мозговой ткани мышей, цыплят, кроликов, в куриных эмбрионах, эмбрионах телят, овец и культурах клеток разного вида животных.
Антигенная структура. Вирусы бешенства не имеют антигенных разновидностей. Существуют два вируса бешенства: дикий, циркулирующий среди животных, вирулентный и для человека, названный «уличным вирусом». Другой вирус бешенства Л. Пастер получил в лабораторных условиях путем последовательных, длительных пассажей (133 раза) уличного вируса через мозг кролика. При этом сократилась продолжительность инкубационного периода при заражении кролика с 21 до 7 дней. Дальнейшие пассажи уже не меняли время инкубации, оно зафиксировалось на 7 днях, и вирус был назван фиксированным (virus fixe). В процессе пассажей вирус адаптировался к мозгу кролика и потерял способность вызывать заболевания у человека, собак и других животных. Однако свои антигенные свойства он полностью сохранил, поэтому его используют для приготовления анти-рабической (против бешенства) вакцины.
Резистентность. Вирус бешенства хорошо устойчив к низким температурам. Долго сохраняется в нервной ткани, иногда и после смерти животного. Инактивируется при кипячении в течение 2 минут. Погибает под действием солнечного света и ультрафиолетовых лучей. Чувствителен к дезинфицирующим растворам и эфиру.
Источники инфекции. Дикие и домашние больные животные.
Пути передачи. Вирус бешенства передается прямым контактным путем от больных животных (укусы) либо при попадании слюны больного животного на поврежденную поверхность кожи или слизистых оболочек.
Патогенез. От момента укуса или ослюнения до заболевания человека проходит от 1545 дней до 36 месяцев (описаны случаи инкубации свыше года). Длительность инкубации зависит от ворот инфекции, характера повреждения ткани. Наиболее короткий период инкубации при укусах в лицо и голову.
Из места внедрения вирусы распространяются по нервным стволам и попадают в клетки центральной нервной системы. Наибольшее количество вируса концентрируется в гип-покампе, продолговатом мозгу, черепных ядрах и в поясничной части спинного мозга. В нервных клетках вирус репродуцируется (размножается). В результате поражения нервной системы появляется повышенная рефлекторная возбудимость: судороги, особенно дыхательных и глотательных мышц. Возникает одышка и водобоязнь (гидрофобия). Одно представление о питье вызывает у больных сильные болезненные судороги. Смерть наступает через 45 дней. Летальность 100%.
Клиническая картина бешенства у собак. Животное становится угрюмым, появляется слюнотечение. Собака начинает пожирать несъедобные вещи камни, щепки и прочие. Затем наступает период возбуждения. Собака бежит по прямой линии, низко наклонив голову. Нападает на встречающихся людей, животных без лая и кусает их. Период возбуждения сменяется параличами и гибелью животного.
Иммунитет. Постинфекционный иммунитет изучен не достаточно. Механизм иммунитета, возникающего после прививки, связан с вируснейтрализующими антителами, которые появляются через 2 недели после вакцинации, а также с интерференцией вакцинного и уличного вирусов. Феномен интерференции состоит в том, что фиксированный вирус значительно быстрее достигает клеток нервной системы, размножается в них и препятствует внедрению уличного вируса. Иммунитет сохраняется в течение 6 месяцев.
Профилактика. Уничтожение бешеных животных, бродячих собак. Регистрация собак и обязательная их вакцинация. В случае укуса немедленная обработка ран.
Специфическая профилактика. Введение антирабичес-кой вакцины предложил Л. Пастер. В настоящее время для лечебно-профилактической иммунизации бешенства используют следующие вакцины:
1) вакцина антирабическая культуральная из штамма Вну-кова-32;
2) вакцина антирабическая культуральная очищенная инактивированная «Рабивак». Используют с 1993 г.
Вводят внутримышечно по 1 мл, это разовая доза. Сразу же после укуса на 3, 7, 14, 30-й день. Ревакцинация на 90-й день.
Противопоказания к прививкам
1) острые инфекционные и неинфекционные заболевания и хронические заболевания в стадии обострения;
2) системные аллергические реакции на предшествующие введения препаратов;
3) аллергические реакции на аминогликаны;
4) беременность.
В вышеперечисленных ситуациях применяют иммуноглобулин гетерологичный (лошадиный) или гомологичный (человеческий).
Особенности проведения антирабической иммунизации I. Если нет глубоких повреждений и произошло ослюне-ние кожных покровов или одиночные укусы или царапины, туловища, верхних и нижних конечностей кроме головы, лица, шеи, кисти.
1. Животное в момент укуса и в течение 10 суток наблюдения здорово, вакцинация не назначается.
2. Животное в момент укуса здорово, в течение 10 суток заболело, погибло или исчезло лечение начинают от
момента появления признаков болезни у животного или от момента исчезновения.
3. Животное с подозрением на бешенство. Лечение проводить немедленно, если в течение 10 суток животное здорово лечение прекращают.
II. Если произошел укус головы, шеи, лица, кисти, гениталии.
1. Животное в момент укуса здорово или с подозрением на бешенство. Проводят комбинированное лечение: вакцина + иммуноглобулин немедленно. В течение 10 суток животное здорово лечение прекращается.
2. Наблюдение за животным невозможно. Проводят комбинированное лечение полным курсом.





















































Билет 21
1. Субклеточные формы бактерий: протопласты, сферопласты, L-формы. Их значение в инфекционной патологии
Пептидогликан является «мишенью» для действия некоторых антибиотиков (пенициллинов и лизоцима). Пенициллин нарушает образование тетрапептидных связей, а лизоцим разрушает гликозидные связи между мурамовой кислотой и ацетилглюкозамином. При действии пенициллина на растущую бактериальную культуру образуются безоболочечные формы бактерий, лишенные клеточной стенки, которые называют протопласты, сферопласты и L-формы.
Протопласты – это формы бактерий, которые под действие пенициллинов полностью теряют клеточную стенку. В обычной изотонической среде подвергаются плазмолизу.
Сферопласты - это формы бактерий, которые под действие пенициллинов частично теряют клеточную стенку и имеют форму сферы, так как полностью отсутствует пептидогликан. В обычной изотонической среде подвергаются плазмолизу, а в гипертонической среде (раствор сахарозы или хлорида натрия) клетки сохраняют слабую метаболическую активность, но утрачивают способность к размножению.
L – формы – это такие бактерии, которые при действии пенициллина полностью или частично утрачивают клеточную стенку, но сохраняют способность к размножению. Название дано в честь института имени Д. Листера (Англия), в котором они были первые выделены. L-формы могут возникать в организме человека в результате длительного лечения некоторыми антибиотиками (пенициллином).
Нестабильные L-формы – это такие виды L-форм, которые способны к реверсии и могут синтезировать пептидогликан клеточной стенки.
Стабильные L-формы – это такие виды L-форм, которые не способны к реверсии и не могут синтезировать пептидогликан клеточной стенки.
2. Особенности питания бактерий. Классификация бактерий но источникам углерода и азота, источникам энергии и донорам электронов. Автотрофы и прототрофы
Типы питания бактерий определяются по характеру усвоения углерода и азота.
По усвоению углерода бактерии делят на 2 типа:
аутотрофы, или литотрофы, бактерии, использующие в качестве источника углерода СО2 воздуха.
гетеротрофы, или органотрофы, бактерии, которые нуждаются для своего питания в органическом углероде (углеводы, жирные кислоты).
По способности усваивать азот микроорганизмы делятся на 2 группы: аминоавтотрофы и амоногетеротрофы.
Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха или усваивают его из аммонийных солей.
Аминогетеротрофы получают азот из органических соединений аминокислот, сложных белков. Сюда относятся все патогенные микроорганизмы и большинство сапро-фитов.
По характеру источника использования энергии микроорганизмы делятся на фототрофы, использующие для биосинтетических реакций энергию солнечного света, и хемо-трофы.
Хемотрофы получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенного для человека вида).
Графологическая структура «Питание бактерий»
по характеру усвоения углерода
по характеру усвоения азота
по характеру использования источника энергии
аутотрофы гетеротрофы амино- амино- фото- хемо-
(литотрофы) (органотрофы) автотрофы гетеро- трофы трофы
(от греч. litos трофы камень)
Факторы роста: наряду с пептонами, углеводами, жирными кислотами и неорганическими элементами, бактерии нуждаются в специальных веществах ростовых факторах, играющих роль катализаторов в биохимических процессах клетки и являющихся структурными единицами при образовании некоторых ферментов. К факторам роста относятся различные витамины, некоторые аминокислоты, пуриновые и пиримидиновые основания и др.
Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.
Питательные среды подразделяются на 4 основные группы:
универсальные; специальные;
избирательные (элективные);
дифференциально-диагностические .
1. Универсальные (МПА, МПБ) содержат питательные вещества, в присутствии которых растут многие виды патогенных и непатогенных бактерий.
2. Питательные специальные среды применяют для выращивания бактерий, не размножающихся на универсальных средах (кровяной, сывороточный агар, сывороточный бульон).
3. Избирательные (элективные) среды служат для выделения определенного вида микробов, росту которых они способствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для брюшного тифа.
4. Дифференциально-диагностические среды позволяют отличить (отдифференцировать) один вид микробов от другого по ферментативной активности, например, среды Гиса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды. Кроме того, в лабораториях для первичного посева и
транспортировки исследуемого материала применяют консервирующие среды (глицериновую, магниевую и т. д.).
3. Возб-ли коклюша и паракоклюша
Bordetella pertussis возбудитель коклюша, был выделен от больных коклюшем в 1906 г. Т. Борде и О. Жангу.
Морфологические и культуральные свойства., Возбудители коклюша мелкие палочки овоидной формы (кокко-бациллы), грам~, слабо окрашиваются анилиновыми красителями. Имеют капсулоподобную оболочку и включения во-лютина. Спор и жгутиков не имеют. Аэробы. Opt t - 37°С. На простых средах растут плохо. Для первичного выделения бордетелл используют агар БордеЖангу и КУА. Повышенное содержание СО2 способствует ускорению роста этих возбудителей. На агаре БордеЖангу с добавлением крови бор-детеллы образуют колонии, напоминающие капельки ртути. Колонии бактерий коклюша бывают зернистыми и гладкими. В кровяном бульоне они образуют муть и дают небольшой осадок.
Резистентность. Во внешней среде бордетеллы не устойчивы. На солнечном свету погибают через 1 час. Чувствительны к дезрастворам.
Антигенная структура. У бордетелл выделяют общие (родовые) и специфические (видовые) антигены. К общему антигену относится термостабильный соматический О-анти-ген. Видовые антигены обозначают как факторы. Их у бордетелл выявлено 14. Фактор 7 является родовым, общим для всех бордетелл; фактор 1 свойственен В. pertussis, фактор 1 В. parapertassis. Остальные встречаются в различных комбинациях в зависимости от их сочетания различают 6 сероваров возбудителя.
Эпидемиология. Коклюшем болеют только люди, поэтому источником инфекции является больной человек. Бактерионосительство не выявлено. Путь передачи инфекции воздушно-капельный, заражение происходит через дыхательный тракт. Наиболее подвержены этому заболеванию дети дошкольного возраста. Заболевание характеризуется сезонностью и чаще всего регистрируется в осенне-зимний период.
Патогенез заболевания. Проникнув в организм через верхние дыхательные пути, бактерии коклюша размножаются в слизистой оболочке дыхательных путей. В кровь они не попадают. Экзотоксины, выделяемые коклюшем, вызывают катаральное воспаление слизистой оболочки трахеи и бронхов, раздражают рецепторы слизистой оболочки и обусловливают непрерывный поток импульсов в центральную нервную систему, образуя стойкий паг возбуждения. Таким образом, приступы кашля развиваются под действием экзотоксина (это специфическое влияние), а также под действием неспецифических факторов (резкий звук, прикосновение, инъекции и т. д.). В возникновении приступов кашля имеет значение и сенсибилизация организма к токсинам В. pertussis.
Клинические проявления. Инкубационный период коклюша в среднем составляет 9 дней. Болезнь характеризуется цикличностью течения и протекает в 3 периода:
1) катаральный длится 2 недели, характеризуется грип-поподобным состоянием, кашлем, температура тела нормальная или субфебрильная;
2) конвульсивный (судорожный) период длится 46 недель, сопровождается тяжелой клинической картиной. У больного появляются приступы спазматического кашля, доводящего до рвоты, цианоза, судорог и остановки дыхания. Таких приступов может быть 540 в сутки. Температура тела нормальная;
3) период угасания длится 23 недели. Постепенно уменьшаются частота и выраженность приступов кашля.
В общей сложности болезнь длится долго 1011 недель. После перенесенного заболевания у человека вырабатывается стойкий, пожизненный иммунитет.
Профилактика осуществляется ранним выявлением и изоляцией больных коклюшем. Для профилактики контактным детям вводят у-глобулин, витамины. Специфическую профилактику проводят путем вакцинации коклюша диф-терийно-столбнячной вакциной (АКДС), в 1 мл которой содержится 40 млрд убитых микробных клеток коклюша и 60 Ед очищенного дифтерийного анатоксина. Вакцину вводят детям начиная с 3-месячного возраста, троекратно, подкожно в дозе 1 мл. До введения обязательной вакцинации детей случаи заболевания коклюшем часто заканчивались летально, особенно в возрасте до года. Правильно проведенная вакцинация снижает заболеваемость в 10 раз.
Bordetella parapertussis возбудитель паракоклюша, сходен с В. pertussis, но клиническое течение заболевания протекает легче. Паракоклюш составляет примерно 20% от числа заболеваний с диагнозом коклюш. Перекрестного иммунитета при этих болезнях не возникает. Дифференцировку видов проводят определением подвижности и способности утилизировать цитрат, а также в реакции агглютинации со специфическими антисыворотками. Иммунопрофилактика паракоклюша не разработана.



Билет 22
Тинкториальные свойства бактерий : методы окраски, красители, механизмы взаимодействия красителей с отдельными бактериальными структурами. Окраска по Грамму
Красители и их виды
Тинкториальные свойства – это отношение бактерий к красящим веществам или способность вступать в реакцию с красителями
и окрашиваться определенным образом. Механизм окраски микроорганизмов – сложный физико-химический процесс, в
котором большую роль играют свойства адсорбции, капиллярности,
химического сродства красителя и микроорганизма и pH среды, в которой
он определяется. Изнутри клетки бактерий окрашиваются основными красителями, так как ее содержание имеет кислую среду, а кислыми красителями – некоторые органеллы, несущие положительный заряд, или фон. Простые методы окраски бактерий – применяется один краситель, а в сложных методах окраски используют несколько красителей,
дифференцирующих средств. Например, метод окраски грам+ и грам-
бактерий, метод окраски Циля-Нильсона.
Виды красителей
1) Основные:
а) метиленовый синий;
б) фуксин основной;
в) генциан виолет;
г) везувин;
д) хризаидин;
е) метиленовый фиолетовый;
ж) малахитовый зеленый;
з) гематоксилин.
2) Нейтральные:
а) нейтральный красный.
3) Кислые:
а) фуксин кислый;
б) конго желтый;
в) нигрозин черный;
г) эозин.
Виды растворов
Рабочие – это такие растворы, которые применяются непосредственно для работы. Они готовятся из всех остальных видов растворов.
Водные растворы.
Спиртовые растворы.
Концентрированные растворы.
Протравы
Протравы служат для повышения силы красителя. К протравам можно отнести кислоты, щелочи. Так как бактериальная клетка заряжена отрицательно, то щелочи используются для разрыхления клеточной стенки бактерии.
Для того чтобы увидеть микроорганизмы, их необходимо окрасить. Существуют простые и сложные способы окра- шивания микроорганизмов. При простом способе окрашивания на мазок наносится один краситель, при сложном способе окрашивания 2 или более красителей. К таким способам окрашивания относится окраска по Граму. Соответственно выделяют формы бактерий грамположительные (окрашиваются в фиолетовый цвет) и грамотрицательные (окрашиваются в красный цвет). Грамположительные бактерии имеют несложно организованную, но мощную клеточную стенку, состоящую из множественных слоев пептидоглика-на, включающих уникальные полимеры тейхоевых кислот. Грамотрицательные бактерии имеют более тонкую клеточную стенку, включающую бимолекулярный слой пептидо-гликана и не содержащую тейхоевой кислоты.
Окраска препарата по Граму
1. Небольшое количество генцианвиолета напить на препарат; время окраски 2 мин.
2. Избыток краски слить в лоток, на препарат нанести пипеткой несколько капель раствора Люголя на 1 минуту.
3. На препарат налить несколько капель спирта, обесцвечивание проводить до отхождения фиолетовых капель струи краски, но не более 30 с.
4. Мазок тщательно промыть водой.
5. Мазок докрасить разведенным фуксином 2 мин.
Микроскопирование препарата
1. Установить освещение: конденсор должен быть поднят до упора, настройку производить с объективом малого увеличения 8-х необходимо белое освещенное поле.
2. Препарат поместить на предметный столик.
3. Макровинтом опустить объектив на расстояние 0,5 см от препарата.
4. Глядя в окуляр, получить изображение препарата, вращая макровинт против часовой стрелки (на себя).
5. Произвести точную фокусировку с помощью микровинта.
6. Переместить револьвер на большое увеличение (объектив 40-х) и провести дефокусировку только микровинтом.
7. После просмотра препарата перевести револьвер на увеличение 8-х (малое) и только после этого снять препарат с предметного столика.

АГ орг-ма чел-ка и животных
Деятельность этих клеток направлена на распознавание и уничтожение чужеродных агентов антигенов.
Свойства антигенов
Антигены обладают двумя основными свойствами:
1) антигенностью. Это способность вызывать в организме выработку антител.
Антигенность вещества зависит от его чужеродности, от величины и сложности строения молекулы, от его растворимости. Все эти свойства присущи белкам или белковой части антигена;
2) специфичностью выражается в способности антигенов взаимодействовать только с теми антителами, которые выработались в ответ на введение данного антигена. Специфичность антигена определяется небольшим участком молекулы детерминантной группой. Количество этих групп может быть разным. Их функции выполняют углеводы, пептиды, липиды, нуклеиновые кислоты. Антигены многих микроорганизмов уже хорошо изучены (у сальмонелл, эшерихий, шигелл). У бактерий различают несколько видов антигенов:
1) групповые. Являются общими для двух или более видов микробов. Например, возбудители брюшного тифа имеют общие групповые антигены с возбудителями парати-фов А и В;
2) специфические антигены имеются только у данного вида микроорганизма. Знание специфических антигенов позволяет дифференцировать микробов внутри рода и вида.
Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 1500 типов сальмонелл. По локализации антигенов в микробной клетке различают:
1) соматические, О-антигены связаны с телом микробной клетки. О-антиген высокотоксичен (является эндотоксином грамотрицательных микроорганизмов), термостабилен (не разрушается даже при кипячении). Однако соматический антиген разрушается под действием формалина и спиртов;
2) жгутиковые, Н-антигены имеют белковую природу и находятся в жгутиках подвижных микроорганизмов. Н-антигены быстро разрушаются при нагревании;
3) капсульные, К-антигены расположены на поверхности микробной клетки и называются еще поверхностными. Наиболее детально эти антигены изучены у кишечной группы бактерий. У них различают Vi-, M-, В-, L- и А-антигены. При иммунизации человека коплексом Vi-антигена наблюдается высокая степень защиты против брюшного тифа. Наибольшая термостабильность характерна для группы А они не разрушаются даже при длительном кипячении. Группа В выдерживает нагревание до 60°С около 1 часа, группа L быстро разрушается при такой же температуре.
Антигенными свойствами обладают также бактериальные токсины, ферменты, белки, которые секретируются бактериями в окружающую среду. При взаимодействии со специфическими антителами эти антигены теряют свою активность.
По иммуногенности антигены бывают полноценными и неполноценными.
Полноценные антигены обладают способностью вызывать образование антител в организме и вступают с ними в специфическое взаимодействие. Такие антигены имеют большую молекулярную массу, большой размер молекулы и хорошо взаимодействует с факторами иммунитета. Результат этого взаимодействия можно наблюдать в пробирке. Под влияни-
ем антител микробы могут склеиваться и оседать на дно пробирки, эта реакция называется реакцией агглютинации.
Неполноценные антигены обладают низкой иммуноген- ] ностью и не вызывают образования антител в организме, но они становятся полноценными, если соединятся с белками ] организма.
Существует несколько путей проникновения антигенов в
макроорганизм:
Ф через кожные покровы и слизистые оболочки в результате их повреждения (укусы насекомых, ранения, микротравмы и т. д.); путем всасывания в ЖКТ;
* межклеточно (при незавершенном фагоцитозе, при внутриклеточном паразитировании микроорганизм может разноситься по всему организму). Проникнув в организм, микроб разносится по всем органам и тканям с током крови или лимфы. Процесс проникновения антигена и его контакт с иммунной системой протекают поэтапно, постепенно.

возб-ли бруцеллеза
Возбудители этого заболевания относятся к роду Brucella. Впервые палочки бруцеллеза открыл Д. Брюс в 1887 г.
Морфологические и культуральные свойства. Бруцел-лы мелкие неподвижные палочки или коккобактерии. В мазках располагаются отдельно, парами или беспорядочно. Грам~, спор и капсул не образуют. Аэробы. Относятся к медленно растущим микроорганизмам, рост на питательных средах появляется через 430 суток, рН среды 6,57,2, оптимальная температура 37°С. Хорошо растут на простых средах, но более подходящими являются сывороточно-декстрозный агар, агар из картофельного настоя с сывороткой. Бруцеллы образуют мелкие, выпуклые и гладкие, мутноватые, с перламутровым оттенком колонии. На печеночном бульоне бруцеллы образуют помутнение среды в результате выпадения слизистого осадка. Для выделения бруцеллы используют селективные среды, содержащие определенные красители и антибиотики (полимиксин В, бацитрацин и
Ферментативные свойства. Бруцеллы не разжижают желатин, не расщепляют белков. Ферментируют углеводы, хотя образование кислоты недостаточно для идентификации. Для дифференциации бруцелл используют их чувствительность к бактериостатическому действию красителей основного фуксина и тионина.
Резистентность. Бруцеллы очень устойчивы в окружающей среде. В почве, испражнениях животных, навозе бруцеллы сохраняются от 4 до 5 мес.; в пищевых продуктах до 4 мес.; в пыли 1 мес. Хорошо переносят низкие температуры. Чувствительны бруцеллы к высокой температуре и действию дезинфицирующих веществ. При кипячении палочки бруцелл погибают мгновенно. Быстро погибают при действии дезрастворов группы хлора и карболовой кислоты.
Эпидемиология. Источником инфекции бруцеллеза являются домашние животные. Заболевания у людей возникают редко на фоне эпизоотии. Возбудители передаются чело-
веку через контакт с зараженными фекалиями, молоком, мочой и мясом. А заразными также являются выделения больных животных околоплодная жидкость и влагалищная слизь. Бруцеллы обладают способностью к миграции переходу от своих обычных хозяев к животным других видов. Например, коровы, зараженные Br. militensis, становятся источником заражения людей. В РФ заболеваемость людей бруцеллезом носит профессиональный характер. Заражаются главным образом ветеринарный и зоотехнический персонал, работники молочных ферм и мясокомбинатов и др. Возбудитель попадает в организм человека через поврежденную кожу, слизистую оболочку дыхательных путей и ЖКТ, конъюнктиву глаз.
В условиях сельского хозяйства отмечается сезонность заболеваний бруцеллезом в период окота овец и коз (март май).
Клинические проявления. Инкубационный период длится 13 недели, иногда больше. В первые 10 суток бактерии размножаются в лимфатических узлах (миндалины, заглоточные, язычные, подчелюстные, шейные узлы). Через 3 недели начинается процесс формирования гранулем. Из лимфатических узлов бруцеллы попадают в кровоток, с током крови они попадают в печень, селезенку, костный мозг. Таким образом, болезнь имеет остросептический характер. У больного часто отмечается поражение опорно-двигательного аппарата, кроветворной, нервной и половой систем. Бруцеллез нередко дает рецидивы, продолжаясь месяцами и годами. Летальный исход наблюдается редко. Бруцеллез у человека имеет много общих признаков с туберкулезом, брюшным тифом, малярией. Поэтому лабораторная диагностика бруцеллеза имеет большое значение.
После перенесенного заболевания у человека вырабатывается устойчивый иммунитет.
Профилактика заболеваний человека обеспечивается путем проведения совместно с ветеринарными организациями комплекса общих и специфических мероприятий. Снижению заболеваемости способствует элементарное соблюдение пра-
вил личной гигиены и режима обработки сельскохозяйственной продукции.



Билет 23
Споры бактерий, методы их выявления
Споры и спорообразование. Спорообразование присуще некоторым, преимущественно палочковидным микроорганизмам (бациллы и клостридии). При попадании бацилл в неблагоприятные условия в клетке возникают структурные изменения. В одном из участков клетки цитоплазма с частью нуклеоида уплотняется, образуется предспоровая мембрана; затем она покрывается плотной многослойной мембраной, содержащей минимальное количество свободной воды и большое количество кальция, липидов и миколовой кислоты.
Споры обладают повышенной устойчивостью к действию факторов внешней среды и могут длительно (десятки лет) сохраняться в неблагоприятных условиях. Споры некоторых бацилл выдерживают кипячение и действие высоких концентраций дезинфицирующих средств.
Спорообразование происходит у бактерий в течение 18 20 часов. В бактериальной клетке образуется только одна спора, из нее прорастает только одна вегетативная клетка, следовательно, спора не является органом размножения, а служит только для перенесения неблагоприятных условий.
По характеру локализации в теле бацилл и клостридий споры располагаются:
1) центрально возбудитель сибирской язвы;
2) субтерминально ближе к концу (возбудитель ботулизма, анаэробной инфекции и др.);
3) терминально на конце палочки (возбудитель столбняка).
Фагоцитоз. виды фагоцитирующих клеток, фазы фагоцитоза. Критерии оценки фагоцитоза
Фагоциты. Фагоцитоз (от греч. phagos пожираю, cytos клетка) впервые открыл И. И. Мечников, за это открытие в 1908 г. он получил Нобелевскую премию. Механизм фагоцитоза состоит в поглощении, переваривании, инактивации инородных для организма веществ специальными клетками-фагоцитами. К фагоцитам Мечников отнес макрофаги и микрофаги. В настоящее время все фагоциты объединены в единую фагоцитирующую систему. В нее включены: промоноциты вырабатывает костный мозг; макрофаги разбросаны по всему организму: в печени они называются «купферовские клетки», в легких «альвеолярные макрофаги», в костной ткани «остеобласты» и т. д. Функции клеток-фагоцитов самые разнообразные: они удаляют из организма отмирающие клетки, поглощают и инактивируют микробы, вирусы, грибы; синтезируют биологически активные вещества (лизоцим, комплемент, интерферон); участвуют в регуляции иммунной системы.
Процесс фагоцитоза, т. е. поглощение инородного вещества клетками-фагоцитами, протекает в 4 стадии:
1) активация фагоцита и его приближение к объекту (хемотаксис);
2) стадия адгезии прилипание фагоцита к объекту;
3) поглощение объекта с образованием фагосомы;
4) образование фаголизосомы и переваривание объекта с помощью ферментов.
Фагоциты подвижные клетки и могут перемещаться по направлению к объекту. Движение фагоцита к объекту называется хемотаксисом. Как правило, фагоциты «переваривают» захваченные чужеродные агенты, тогда говорят о завершенном фагоцитозе. Но не всегда фагоцитоз заканчивается перевариванием такой фагоцитоз называется незавершенным. Причины, обусловливающие незавершенный фагоцитоз:
1) некоторые микроорганизмы подавляют слияние фага и лизосомы;
2) некоторые микроорганизмы выделяют вещества, которые нейтрализуют действие рибосомальных ферментов;
3) некоторые микроорганизмы могут выходить из фагосо-мы;
4) некоторые бактерии имеют устойчивость к лизосомаль-ным ферментам (гонококк, стафилококк, палочки туберкулеза и лепры).
В организме есть вещества обсанины, которые повышают фагоцитоз. Это нормальные антитела, которые «обволакивают» антигены и способствуют их фиксации на фагоците.
Возб-ль дифтерии
К роду Corinebacterium относятся бактерии, имеющие булавовидные утолщения на концах, патогенные для человека и животных, растений и непатогенные коринебактерии (диф-тероиды).
Морфологические и культуральные свойства. Corinebacterium diphtheriae (от лат. corina булава, diphtera кожа) это прямые или слегка изогнутые палочки, полиморфные, хорошо окрашиваются по полюсам. Спор не образу ют, жгутиков не имеют, имеют микрокапсулу. У дифтерийных бактерий имеются булавовидные утолщения по концам. По консистенции это желеобразная масса. Впервые был выделен у спириллы. В мазках палочки располагаются под углом, напоминая вид растопыренных пальцев. Грамположительные. Аэробы или факультативные анаэробы. Opt t роста 37°С, рН среды 7,27,6. Хорошо растут на средах, содержащих белок (кровяной агар, свернутая сыворотка, сывороточный агар). На кровяном агаре образует небольшие, круглые колонии с ровными краями, сероватого цвета. На теллуритовом агаре образуют крупные,
шероховатые (R-формы) розеткообразные колонии черного или серого цвета.
По культуральным и биологическим свойствам корине-бактерии дифтерии подразделяются на три биовара: gravis, mitis и intermedius.
Ферментативные свойства. Дифтерийные палочки не свертывают молоко, не разлагают мочевину, не выделяют индол, сероводород выделяют слабо. Ферментируют глюкозу и мальтозу.
Токсинообразование. Коринебактерии дифтерии вырабатывают очень сильный экзотоксин. Нетоксигенные штаммы не вызывают заболевания. Токсигенность коринебакте-рий дифтерии связана с лизогенностью (наличие в токсиген-ных штаммах умеренных фагов профагов). Дифтерийный экзотоксин это сложный комплекс, который проявляет все свойства экзотоксина термолабильный, высокотоксичный, обладает специфическим действием на организм (поражает сердечную мышцу, надпочечники и нервную ткань). При действии 0,4% формалина, в течение месяца, при 40°С токсин переводится в анатоксин, который затем используют для иммунопрофилактики дифтерии (АДС, АКДС). Токсин не устойчив во внешней среде, разрушается под действием света, О2, при нагревании до 60°С. Активность токсина выражают в единицах Dim (Dosis letalis minima минимальная смертельная доза). 1 ED Dim дифтерийного токсина равна наименьшей концентрации, убивающей морскую свинку массой 250 г на 45-е сутки.
Антигенная структура. На основании строения О- и К-антигенов различают 11 сероваров возбудителя дифтерии, которые установлены путем реакции агглютинации.
Резистентность. Возбудители дифтерии достаточно устойчивы к различным факторам внешней среды. При комнатной температуре на различных предметах могут сохраняться от 1 до 2 месяцев. При нагревании до 60°С и действии 1% раствора фенола погибают через 10 мин. Корине-
бактерии устойчивы к низким температурам и высушиванию.
Патогенез поражений. Входные ворота дифтерии слизистые оболочки носоглотки, глаз и реже кожа. На месте внедрения возбудителя образуется дифтеритическая пленка серовато-желтого цвета, которая с трудом отделяется от подлежащих тканей. Этот процесс сопровождают регионарные лимфадениты. Если дифтеритическая пленка разрастается, воспалительный процесс со слизистой глотки распространяется на гортань и бронхи, это может привести к асфиксии. Дифтерийные бактерии вырабатывают очень сильный экзотоксин, при попадании его в кровь развивается токсинемия. Токсин поражает сердечную мышцу, надпочечники, почки. Человек может умереть от паралича сердца.
Клинические проявления дифтерии зависят от места внедрения возбудителя. Различают дифтерию зева (8090% случаев), дифтерию носа, кожи, глаз, половых органов и др. Инкубационный период составляет от 2 до 10 дней. Наиболее восприимчивы к дифтерии дети от 1 до 7 лет. Заболевание начинается с повышения температуры тела, боли при глотании, появлении пленки на миндалинах, увеличения лимфатических узлов.
После перенесения дифтерии у человека вырабатывается длительный иммунитет.
Профилактика. Профилактика этого заболевания заключается в ранней диагностике и госпитализации больных, выявлении бактерионосителей.
Специфическую профилактику проводят путем введения в организм дифтерийного анатоксина, который входит в состав комбинированных вакцин: АКДС, АДС и АДС-М. Иммунизацию проводят начиная с 3-месячного возраста, далее повторную ревакцинацию как детям, так и взрослым (см. календарь прививок).
Классификация дифтерии по анатомической локализации
I. Дифтерия ротоглотки:
1. Локализованная 75%:
а) островчатая;
б) пленчатая.
2. Распространенная 710%. Клинические 3. Токсическая 20%:
формы: а) субтоксическая;
б) токсическая I ст. тяжести;
в) токсическая II ст. тяжести;
г) токсическая Ш ст. тяжести;
д) гипертоксическая.
П. Дифтерия дыхательных путей:
1. Дифтерия гортани (круп локализованный);
2. Дифтерия гортани и трахеи (круп распространенный);
3. Дифтерия гортани, трахеи и бронхов (нисходящий круп);
4. Дифтерия носа:
а) катаральная форма;
б) пленчатая форма;
в) токсическая форма.
Ш. Другие локализации дифтерии:
1. Дифтерия глаза (конъюнктивальная форма):
а) катаральная;
б) пленчатая;
в) токсическая.
2. Дифтерия слизистой оболочки рта:
а) дифтерия щёк;
б) подъязычной области;
в) языка;
г) губы.
3. Дифтерия половых органов (анально-генитапьная).
4. Дифтерия пищевода.
5. Дифтерия кожи.
Схема выделения возбудителя дифтерии
метиленовым
(поЛеффлеру),
кристалл виолетом
по Граму
Пленка, отделяемое носоглотки, глаз, ушей,
уретры, раны и др
Бактериологический метод
Кровяно-теллуритовые среды, среда Бунина, соеда Клауберга и др.
Среда накопления
Чистая культура
метиленовым
(по Леффлеру),
кристалл виолетом
по Граму
Ферментативные свойства









































































Билет 24
Капсулы бактерий, методы их выявления.
Капсула. Под влиянием различных факторов среды некоторые микробы обладают способностью откладывать на поверхности своего тела более мощный слизистый слой вокруг клеточной стенки, получивший название «капсулы».Капсульное вещество бактерии состоит из полисахаридов, мукополисахаридов или полисахаридов. Капсулообра-зование считается приспособительной функцией микроба. Патогенные капсульные микробы (клебсиеллы, возбудители сибирской язвы, возбудители пневмонии) более устойчивы к фагоцитозу, действию защитных факторов организма и внешней среды.Микрокапсула защищает клетки от фагоцитов организма, а также способствует адгезии стафилококков к органам и тканям. Ферменты проявляют самое разное действие. Наиболее ярко выражены у золотистого стафилококка, который продуцирует различные ферменты: 1) каталаза защищает бактерии от действия кислородозависимых механизмов фагоцитов; 2) ряд ферментов, разлагающих сахара: лактозу, мальтозу, глюкозу, маннит; 3) плазмакоагулаза приводит к свертыванию белков плазмы; 4) фибринолизин; 5) гиалу-ронидаза способствует распространению возбудителя в организме; 6) ДНКаза и др.
Клиническая иммунология: определение, задачи, подходы к оценке состояния иммунного статуса
Это иммунологические препараты, так как действие их основано на иммунологических принципах и реакциях. Диагностические препараты, наборы и системы используют в лабораторной практике для диагностики инфекционных и неинфекционных болезней, идентификации бактерий, вирусов, грибов и простейших, для определения аллергических и иммунопатологических расстройств. Также диагностику мы применяют для выявления специфических антигенов и антител, факторов естественной резистентности (комплемент, интерферон).
В соответствии с целевым назначением диагностические препараты содержат те или иные иммунореагенты, которые используют для выявления объекта исследования. На сегодняшний день созданы сотни диагностических систем, с помощью которых выявляют ВИЧ-инфицированных, больных
брюшным тифом и гепатитами, а также онкологических и аллергических больных.
Иммунологические методы диагностики высокочувствительны и достоверны, поэтому нашли широкое применение в медицине.

















































































Билет 25
Жгутики, пили бактерий, методы их выявления
Жгутики являются основным локомоторным органоидом бактерий. В результате их энергичного движения, напоминающего вращение штопора, жидкость движется вдоль жгутиков и бактерий и развивает скорость « 50 мкмс. Жгутики состоят из белковых веществ типа флагеллина, принадлежащего к классу сократимых белков.Жгутики связаны с телом бактериальной клетки при помощи двух дисков: наружный находится в клеточной стенке, внутренний в цитоплазматической мембране. По расположению жгутиков подвижные микробы подразделяются на 4 группы:
1. Монотрихи бактерии с одним жгутиком на конце (холерный вибрион, синегнойная палочка).
2. Амфитрихи бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах (Spimliun volutans).
3. Лофотрихи бактерии, которые имеют по пучку жгутиков на одном конце (палочки сине-зеленого молока).
4. Перитрихи бактерии, обладающие жгутиками по всей поверхности тела (Е. coli, сальмонеллы брюшного тифа, паратифов А и В).
У некоторых видов микробов имеются пили (реснички, фимбрии, филаменты), представляющие собой образования, которые значительно короче и тоньше жгутиков. Они покрывают тело клетки. Полагают, что они не являются органами передвижения, а способствуют прикреплению микробных клеток к поверхности некоторых субстратов.
Неспецифические факторы противоинфекционной защиты орг-ма: тканевые, клеточные, общефизиологические
Неспецифические факторы защиты врожденные и лишены избирательности, так как действуют на любой микроорганизм.
К первичным барьерам неспецифических факторов защиты относятся:
1. Кожа покрывает все тело и механически защищает организм от проникновения микробов, вирусов и т.д. На коже также имеются потовые и сальные железы, которые вырабатывают молочную и жирные кислоты. Известно, что кислая среда губительно действует на микроорганизмы. Если на поверхность чистой кожи нанести микробы, то через 30 мин они погибнут. Грязная кожа обладает сниженными бактерицидными свойствами, поэтому мытье рук и тела является важным условием сохранения защитной роли кожи.
2. Слизистые оболочки носоглотки, дыхательных путей, кишечника обладают еще более выраженными защитными свойствами, чем кожа. В слезах, слюне обнаружен лизоцим, который растворяет многие сапрофитные микробы, а также некоторые патогенные. Известно, что в слюне у собак лизоцима содержится в 100 раз больше, чем у человека. Поэтому слюна собак является более бактерицидной. Эпителий слизистых путей также механически препятствует проникновению микроорганизмов, эту роль выполняет слизь и реснитчатый эпителий, освобождающие слизистые оболочки от попавших на них частичек. В желудочно-кишечном тракте защитную роль выполняют соляная кислота желудочного сока, которая убивает микроорганизмы. Еще в древние времена люди знали об этом свойстве, поэтому врач никогда не приходил к больному на «голодный» желудок.
3. Нормальная микрофлора организма человека обладает антагонистическим действием к различным видам микроорганизмов.
Она препятствует их размножению и проникновению в организм. Например, кишечная палочка вырабатывает молочную кислоту, которая оказывает губительное действие на бактерии. Если микроорганизмы преодолевают эти барьеры, то в работу вступают вторичные барьеры неспецифических факторов защиты. К ним относятся:
1) гуморальные факторы
2) клеточные факторы защиты.
Возб-ли анаэробной газовой гангрены



































Билет 26

1. Рост и способы размножения бактерий. Фазы размножения бактерии и бактериальной популяции
Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.
Рост это увеличение размеров отдельной особи.
Размножение способность организма к воспроизведению.
Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.
Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.
При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:
1. Фаза исходная (латентная) микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.
2. Фаза логарифмического инкубационного роста идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 1530 мин.
3. Стационарная фаза число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.
4. Фаза отмирания характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.
5ч 10 15 20 25 30 35 40 45 Время нед нед
Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.
При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур. Чтобы знать, как получить чистую культуру того или иного микроорганизма, надо внимательно ознакомиться с практической частью данной главы.
2. Реакция преципитации. Определение, компоненты. Механизм, варианты постановки, применение
Реакция преципитации (1897 г. Клаус) – это осаждение специфического мелкодисперстного АГ эквивалентным кол-ом АТ в растворе электролита
Компоненты: коллоидный раствор АГ; сыворотка с высоким титром АТ
Механизм: АТ+АГ=АТ-АГ: АТ-АГ=преципитат
Преимущества и недостатки: + большая устойчивость к высоким температурам
Значение: сероидентификация (АТ в сыворотке, АГ неизвестный); серодиагностика (неизвестные АТ в сыворотке, изветнйы АГ); определение следовых кол-в АГ; изучение антигенных структур бактерии; определение видовой принадлежности биол. жидкостей; выявление фальсификации мясных пищевых продуктов
Виды: реакция кольцепрецепитации (последовательные разведения антигена наслаивают на стандартное разведение диагностической сыворотки в пробирках, при этом осадок образуется в виде кольца на границе двух сред); реакция преципитации в пробирках (помутнение, выпадение осадка); реакция диффузной преципитации в геле (видимая линия)
3. микоплазмы
Микоплазмы это микроорганизмы, лишенные клеточной стенки, но окруженные трехслойной липопротеидной ци-топлазматической мембраной. Микоплазмы обнаружены в почве, сточных водах, на различных субстратах, в организме животных и человека. Имеются патогенные и непатогенные виды.
К патогенным для человека относится Mycoplasma pneumonia, к полупатогенным m. hominy's и Т- группа.
Клетки микоплазм весьма полиморфны (шаровидные, кольцевидные, коккобациллярные, нитевидные, ветвистые, в виде элементарных телец). Патогенные микоплазмы поражают органы дыхания, мочеполовую и ЦНС. В настоящее время этим возбудителям уделяется особое внимание как возбудителям заболевания воспалительного характера.
Билет 27

1. Диссоциация бактерий

2. Реакция агглютинации : определение, компоненты, механизм, варианты постановки, применение
Реакция агглютинации – это специф. АГ+АТ, проявляющееся в склеивании и выпадении в осадок корпускулярных антигенов: бактерий, эритроцитов, а также частиц с адсорбированными на них антигенами под влиянием антител в среде с электролитом.
Компоненты: культура возбудителя с АГ-агглютиноген, сыворотка с АТ-агглютинин
Механизм: теория «решетки»:
1 - специфическая адсорбция антител на поверхности клетки или частицы, несущей соответствующие антигены;
2 - образование агрегата (агглютината) и выпадение его в осадок.
Методики: на стекле (ориентировочная); в пробирке (позволяет определить кол-во и наличие АГ-агглютиногенов).
Преимущества и недостатки: - недостаточная специфичность (повысить можно разведением исследуемой сыворотки до ее титра или половины титра); - недостаточная чувствительность; - трудоемкость; - длительность; + наглядность.
Титр сыворотки – ее максимальное разведение, в котором обнаруживается агглютинация антигена.
Диагностический титр – это критическая величина титра АТ сыворотки крови больного к конкретному возбудителю, достижение или превышение которой расценивается как диагностический признак заболевания. Устанавливается эмпирическим путем для каждого заболевания. (р. Видаля)
Значение: дифференцировка ранее перенесенной инфекции, вакцинации или текущее заболевание (+),
оценка динамики нарастания титра антител, которое наблюдается только при текущей инфекции.
Реакция адсорбции агглютининов по Кастеллани. Взяли АТ после иммунизации АГ животных, отделили форменные элементы и фибриноген. Получили монорецепторную сыворотку.

Вирусы полиомиелита
Фильтрующийся агент, названный впоследствии вирусом полиомиелита (синоним полиовирус), был выделен в 1909 г. при заражении обезьян К. Ландштейнером и Е. Поппером из спинного мозга умершего от полиомиелита ребенка.
Структура и химический состав. Однонитевая РНК ассоциирована с внутренним белком, при удалении которого ее инфек-ционность сохраняется. Капсид вириона построен по икосаэдрическому типу симметрии и состоит из 60 субъединиц (рис. 21.1).
Культивирование и репродукция. Вирусы полиомиелита хорошо репродуцируются с выраженным ЦПД в первичных и перевиваемых культурах разного происхождения (фибробласты человека, клетки HeLa и др.).
Адсорбция полиовирусов происходит преимущественно на липопротеиновых рецепторах клетки, в которую они проникают путем виропексиса, вирус захватывается клеточной мембраной, которая впячивается внутрь, образуя микровакуоль. После освобождения вириона от капсида образуется реплика-тивная форма РНК, которая является матрицей для синтеза цРНК и фонда вирионных РНК. Репродукция полиовируса происходит в цитоплазме чувствительных клеток.
Вначале синтезируется единый гигантский полипептид, который разрезается протеолитическими ферментами на несколько фрагментов. Одни из них представляют собой капсомеры, из которых строится капсид, другие внутренние белки, третьи вирионные ферменты (РНК-транскриптаза и протеаза). Затем происходит формирование нескольких сотен вирионов в каждой инфицированной клетке, которые освобождаются после ее лизиса.
Антигены. Вирусы полиомиелита разделены на три серологических типа (I, II и III), которые различаются между собой по антигенной структуре и некоторым другим биологическим признакам. Все три серотипа имеют общий комплементсвязыва-ющий антиген. Их дифференциация производится в реакции нейтрализации.
Патогенез заболеваний человека. Входными воротами инфекции является слизистая оболочка рта и носоглотки. Первичная репродукция вируса происходит в эпителиальных клетках слизистой оболочки рта, глотки и кишечника, в лимфатических узлах глоточного кольца и тонкой кишки (пейеровых бляшках).
Из лимфатической системы вирус попадает в кровь. Стадия вирусемии продолжается от нескольких часов до нескольких дней. В некоторых случаях вирус проникает в нейроны спинного и головного мозга, по-видимому, через аксоны периферических нервов. Это может быть связано с повышенной проницаемостью гематоэнцефалического барьера за счет образующихся иммунных комплексов.
Репродукция вируса в двигательных нейронах передних рогов спинного мозга, а также в нейронах большого и продолговатого мозга приводит к глубоким, нередко необратимым изменениям. В цитоплазме пораженных нейронов, которые подвергаются глубоким дегенеративным изменениям, обнаруживаются кристаллоподобные скопления вирионов.
Иммунитет. После перенесения заболевания формируется пожизненный гуморальный иммунитет к соответствующему серотипу вируса. Протективными свойствами обладают вирус-нейтрализующие антитела, которые начинают синтезироваться еще до появления параличей. Однако их максимальные титры (1:2048 и более) регистрируются через 12 мес и обнаруживаются в течение многих лет. Это имеет практическое значение для ретроспективной диагностики полиомиелита. Пассивный иммунитет, приобретенный после рождения, сохраняется в течение первых 45 нед жизни ребенка. Высокая концентрация антител в сыворотке не предотвращает развитие параличей после того, как полиовирус проник в ЦНС.
Экология и распространение. Устойчивость полиовируса во внешней среде сравнительно велика. Он сохраняет свои инфекционные свойства в сточных водах при О °С в течение месяца. Нагревание при температуре 50 °С инактивирует вирус в течение 30 мин в воде, а при 55 °С в молоке, сметане, масле и мороженом. Вирус устойчив к детергентам, но высокочувствителен к УФ-лучам и высушиванию, а также к хлорсодержащим дезинфектантам (хлорная известь, хлорамин). Наиболее чувствительны к полиомиелиту дети, однако заболевают и взрослые. Нередко распространение полиомиелита приобретает эпидемический характер. Источником инфекции являются больные и вирусоносители. Выделение вируса из глотки и с фекалиями начинается в инкубационный период. После появления первых симптомов заболевания вирус продолжает выделяться с фекалиями, в 1 г которых содержится до 1 млн. инфекционных доз. Поэтому главное значение имеет фекально-оральный механизм передачи инфекции через загрязненные фекалиями воду и пищевые продукты. Определенная роль принадлежит мухам. В эпидемических очагах может происходить инфицирование людей воздушно-капельным путем.
Специфическая профилактика. Инактивированная вакцина, полученная Дж. Солком в США путем обработки вируса раствором формалина, обеспечивает достаточно напряженный типоспецифический гуморальный иммунный ответ. К недостаткам инактивированной вакцины следует отнести необходимость ее трехкратного введения парентеральным путем. Кроме того, она не обеспечивает надежного местного иммунитета кишечника.
А. Себиным в США были получены аттенуированные варианты вирусов полиомиелита, из которых в конце 50-х годов советскими вирусологами А. А. Смородинцевым и М. П. Чумаковым была приготовлена живая полиовирусная вакцина. Вакцинные штаммы оказались генетически стабильны. Они не реверсировали к «дикому типу» при пассажах через кишечник людей и не репродуцировались в клетках ЦНС.
Основное отличие вакцинных от исходных, «диких», штаммов состоит в их безвредности для человека.
Живая вакцина имеет ряд преимуществ по сравнению с инактивированной. Она обеспечивает не только общий гуморальный иммунитет, но и местный иммунитет кишечника за счет синтеза секреторных иммуноглобулинов класса А. Вместе с тем в результате интерференции вирусов с «дикими» типами полиовируса в эпителиальных клетках слизистой оболочки тонкого кишечника происходит элиминация- последних из организма. И, наконец, живая вакцина вводится естественным путем через рот, что в значительной мере облегчает ее применение. Недостатком живых вакцин является необходимость постоянного контроля за генетической стабильностью вакцинного штамма.
Для пассивной профилактики полиомиелита применяют человеческий иммуноглобулин.

































Билет 28

1. Орагнизация генетического аппарата бактерий. Фенотип, генотип.
Наследуемая генетическая изменчивость возникает в результате мутаций и генетических рекомбинаций. Изменчивость микроорганизмов
Фенотипическая изменчивость (ненаследуемая модификация)
Генотипическая изменчивость наследуемая
Мутации (от лат. mutatio изменять) это передаваемые по наследству структурные изменения генов. При му-
тациях изменяются участки геномов (т. е. наследственного аппарата).
Бактериальные мутации могут быть спонтанными (самопроизвольными) и индуцированными (направленными), т. е. появляются в результате обработки микроорганизмов специальными мутагенами (хим. веществами, температурой, излучением и т.д.).
В результате бактериальных мутаций могут отмечаться:
* изменение морфологических свойств; изменение культуральных свойств;
возникновение у микроорганизмов устойчивости к лекарственным препаратам;
* ослабление болезнетворных свойств и др.
К генетическим рекомбинациям относятся рекомбинации генов, которые происходят вследствие трансформации, от донора трансдукции и конъюгации.

2. Реакция пассивной ( непрямой) гемагглютинации, реакция РТГА. определение, компоненты, механизм, варианты постановки, применение
Различают прямую и непрямую РГА. При прямой гемагглютинации происходит подавление вирусов антителами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты. Эту реакцию широко используют для диагностики некоторых вирусных инфекций, например гриппа.
При реакции непрямой гемагглютинации (РИГА) происходит склеивание эритроцитов при адсорбции на них определенных антигенов. При этом эритроциты оседают на дно пробирки в виде фестончатого осадка. РИГА применяют для диагностики различных инфекционных заболеваний, для выявления чувствительности к лекарственным препаратам и гормонам. Для определения групп крови применяется реакция агглютинации эритроцитов, при этом используются антите-: ла к группам крови А(П), В(Ш). Контролем служит сыворотка, не содержащая антител, т. е. AB(IV) группы крови, антигены, содержащиеся в эритроцитах групп А(П), В(Ш). О-отрицательный контроль не содержит антигенов, т. е. используют эритроциты группы О(1).

3. Возб-ль сифилиса
sperochetaceae Treponema pallidum возбудитель сифилиса. Под влиянием факторов внешней среды и лечебных препаратов тре-понемы в ряде случаев свертываются в клубки, образуя цисты, покрытые непроницаемой муциноподобной оболочкой. Они длительное время могут находиться в организме больного в латентном состоянии; при благоприятных условиях цисты превращаются в зерна, а затем в типичные спиралевидные трепонемы.





























































Билет 29

1. Плазмиды бактерий, определение, классификация, свойства
Плазмиды - это автономные кольцевые молекулы двунитевой ДНК с меньшей молекулярной массой, в которых закодирована наследственная информация, но которая не является жизненно необходимой для бактериальной клетки.
2. РСК. определение, компоненты, механизм, варианты постановки, применение
РСК – это способность комплекса АГ-АТ адсорбировать на себе комплемент в присутствии гемсистемы (эритроцитарная сыворотка + эритроциты барана) Гемолиз произойдет только при наличии свободного комплемента (реакция отрицательная). В случае, если комплемент уже был предварительно связан комплексами антиген антитело, гемолиза не будет (реакция положительная).
РСК является одной из наиболее распространенных серологических реакций для определения природы и количества антител или антигенов. Универсальность, достаточно высокая чувствительность и специфичность РСК позволяют использовать ее для серодиагностики бактериальных, вирусных и микоплазменных инфекционных заболеваний.
3. Возб-ль парагриппа





















Билет 30
1. Внехромосомные генетические факторы наследственности бактерий, траиспозопы и ипсерцпоиные элементы (Тп, Is). Роль в формировании лекарственной устойчивости

2. РИФ определение, компоненты, механизм, варианты постановки, применение
РИФ – АТ + АГ (чаще связан с флюорохромом), такой АТ-АГ саветится при люминисцентной микроскопии
Прямой метод Кунса – иммунная сыворотка (АТ) мечена флюорохромами. АГ на стекле + АГ специфичная флюоросцирующая сыворотка
- трудность постановки и подготовки препаратов.
Непрямой метод Кунса – необходима одна антиглобулиновая сыворотка, содержащая антитела против кроличьих глобулинов. АГ на стекле + АГ специфичная сыворотка + отмывка + сыворотка меченая флюорохромом + отмывка
Применение: это метод экспресс-диагностики, который по своей быстроте, чувствительности и специфичности не уступает другим иммунологическим реакциям
3













Билет 31
1. Методы культивирования, индикации, идентификации вирусов
В лабораториях вирусы культивируются в курином эмбрионе, организме животных или культуре ткани.

2. реакция лизиса (бактериолиза, гемолиза)
Реакция лизиса – р. растворения корпускулярного АГ под действием АТ в присутствии комплемента: реакция бактериолиза (главным образом, при дифференциации холерных и холероподобных вибрионов).
Реакция бактериолиза – растворение бактерий под действием АТ в присутствии комплемента. Бак. клетка + система комплемента + иммунодиагностическая специфическая сыворотка (АТ)
Реакция гемолиза – эритроциты барана + комплемент (сыворотка Мориса) + антиэритроцитарная сыворотка кролика или эритроциты барана (АТ).
Реакция локального гемолиза в геле (реакция Ерне) является одним из вариантов реакции гемолиза. Она позволяет определить число антителообразующих клеток в лимфоидных органах. Количество клеток, секретирующих антитела гемолизины, определяют по числу бляшек гемолиза, возникающих в агаровом геле, содержащем эритроциты, суспензию клеток исследуемой лимфоидной ткани и комплемент.

3. возб-ль кори
Краснуха (устар. германская корь, коревая краснуха) острозаразное вирусное заболевание, характеризующееся слабо выраженными явлениями общей интоксикации, неяркой мелкопятнистой сыпью по всему телу, проявляющееся быстро распространяющейся сыпью на коже, увеличением лимфоузлов (особенно затылочных), обычно незначительным по-
вышением температуры. У детей до 90% случаев заболевания протекает без видимых симптомов. Инфекция имеет осенне-весеннюю сезонность, увеличением затылочных и заднешейных лимфатических узлов и поражением плода у беременных. Нередко краснуха проявляется только небольшим повышением температуры тела и увеличением лимфатических узлов без появления сыпи.
Краснуха не тяжелая инфекционная болезнь, которая однако при инфицировании беременных может вызвать серьезную фетопатию (синдром врожденной краснухи СВК), заканчивающуюся нередко выкидышем или рождением ребенка с различными тяжелыми пороками развития, такими как слепота, глухота, врожденные пороки сердца. При инфицировании в первые 3 месяца беременности инфекция плода наступает в 90% случаев.
Источником инфекции является человек, больной выраженной или стертой формой краснухи, протекающей без сыпи. Вирус выделяется во внешнюю среду за неделю до заболевания и в течение недели после высыпания.
Процесс развития болезни. Вирус краснухи проникает в организм через слизистую оболочку дыхательных путей и кровью разносится по всему организму.
У беременных вирус краснухи попадает в плод и приводит к замедлению его роста, а также к формированию различных уродств. Заболевание краснухой на 34-й неделе беременности обусловливает врожденные уродства в 60% случаев, на 1316-й неделе и позже в 7%.
После перенесенного заболевания развивается стойкая пожизненная невосприимчивость к нему.
Передается воздушно-капельным путем. Инкубационный период составляет 12 недели. Заболевший человек заразен за 7 дней до появления сыпи и до 710 дня после высыпания. Заболевание начинается остро. Появляются увеличение и болезненность заднешейных и затылочных лимфоузлов, небольшая слабость, недомогание, умеренная головная боль, температура тела повышается до 38°С.
Одновременно на лице, через несколько часов на теле наблюдаются обильная сыпь в виде бледно-розовых пятнышек до 1 см круглой или овальной формы, умеренно выраженный сухой кашель, першение, саднение, сухость в горле, небольшой насморк. Повышенная температура тела и сыпь сохраняются 13 дня, на несколько дней дольше увеличение лимфатических узлов. Характерно появление сыпи вначале на коже лица, с последовательным охватом сыпью всего тела. Типичным является припухание затылочных лимфоузлов. Могут отмечаться симптомы острого респираторного заболевания. В целом, заболевание у детей протекает легко, осложнения наблюдаются редко. Наиболее грозным осложнением является краснушный (наподобие коревого) энцефалит (воспаление мозга), его частота составляет 1:5000 1:6000 случаев.
Большинство больных не нуждаются в специальном лечении. Применяются средства для лечения симптомов и осложнений, облегчающие общее состояние. После перенесенного заболевания развивается пожизненный иммунитет, однако его напряженность с возрастом и под воздействием различных обстоятельств может падать. Таким образом, перенесенное в детстве заболевание краснухой не может служить 100% гарантией от повторного заболевания.
У подростков и взрослых краснуха протекает значительно тяжелее. Более выражены лихорадка, явления интоксикации (недомогание, разбитость), отмечается поражение глаз (конъюнктивит). Характерным для взрослых (с большей частотой у женщин) является поражение мелких (фаланговые, пястно-фаланговые) и реже крупных (коленные, локтевые) суставов. В одну из эпидемий частыми были жалобы на боли в яичниках.
Заболевание беременной женщины приводит к инфицированию плода. В зависимости от срока беременности, на котором происходит заражение, у плода с различной вероятностью (в I триместре вероятность достигает 90%, во II до
75%, в III 50%) формируются множественные пороки развития. Наиболее характерными являются поражение органа зрения (катаракта, глаукома, помутнение роговицы), органа слуха (глухота), сердца (врожденные пороки). Также к СВК относят пороки формирования челюстно-лицевого аппарата, головного мозга (микроцефалия, умственная отсталость), внутренних органов (желтуха, увеличение печени, миокардит и др.) и костей (остеопороз в метаэпифизах длинных трубчатых костей). В 15% случаев краснуха приводит к выкидышу, мертворождению. При диагностике краснухи у беременной осуществляется искусственное прерывание беременности.
Лечение больных краснухой обычно проводится дома, так же, как больных острыми респираторными вирусными инфекциями.
Переболевшим краснухой в первые 16 недель беременности рекомендуется ее прерывание.
Профилактика. Для предупреждения краснухи применяется живая ослабленная вакцина, которая через 20 дней после введения создает невосприимчивость к заболеванию в течение 10 лет.
Для обеспечения стойкой невосприимчивости к краснухе достаточно одной прививки. Первичная вакцинация рекомендуется всем детям начиная с 1215 мес. Ревакцинации следует проводить девочкам в возрасте 1114 лет, а также женщинам не позднее, чем за 3 мес. до предполагаемой беременности.
Детьми вакцинация переносится очень хорошо. У взрослых может отмечаться незначительное увеличение лимфатических узлов и кратковременное небольшое повышение температуры тела.
Беременных женщин вакцинировать нельзя. Кроме того, в течение 3 месяцев после прививки беременность нежелательна, так как имеется риск поражения плода вирусом вакцины.
Изоляция больного краснухой прекращается через 4 дня после появления сыпи.

Билет 32

1. Влияние физических и химических факторов па м/о
Из физических факторов наибольшее влияние на микроорганизмы оказывают: температура, высушивание, лучистая энергия, ультразвук, давление.
Температура: жизнедеятельность каждого микроорганизма ограничена определенными температурными границами. Эту температурную зависимость обычно выражают тремя точками: минимальная (min) температура ниже которой размножение прекращается, оптимальная (opt) температура наилучшая температура для роста и развития микроорганизмов и максимальная (max) температура температура, при которой рост клеток или замедляется, или прекращается совсем. Впервые в истории науки Пастером были разработаны методы уничтожения микроорганизмов при воздействии на них высоких температур.
Оптимальная температура обычно приравнивается к температуре окружающей среды.
Все микроорганизмы по отношению к температуре условно можно разделить на 3 группы:
Первая группа: психрофилы это холодолюбивые микроорганизмы, растут при низких температурах: min t 0°С, opt t от 1020°С, max t до 40°С. К таким микроорганизмам относятся обитатели северных морей и водоемов. К действию низких температур многие микроорганизмы очень устойчивы. Например, холерный вибрион долго может храниться во льду, не утратив при этом своей жизнеспособности. Некоторые микроорганизмы выдерживают температуру до -190°С, а споры бактерий могут выдерживать до -250°С. Действие низких температур приостанавливает гнилостные и бродильные процессы, поэтому в быту мы пользуемся холодильниками. При низких температурах микроорганизмы впадают в состояние анабиоза, при котором замедляются все процессы жизнедеятельности, протекающие в клетке.
Ко второй группе относятся мезофилы это наиболее обширная группа бактерий, в которую входят сапрофиты и почти все патогенные микроорганизмы, так как opt температура для них 37°С (температура тела), min t = 10°С, maxt = 45°C.
К третьей группе относятся термофилы теплолюбивые бактерии, развиваются при t выше 55°С, min t для них = 30°С, max t = 7076°С. Эти микроорганизмы обитают в горячих источниках. Среди термофилов встречается много споровых форм. Споры бактерий гораздо устойчивей к высоким температурам, чем вегетативные формы бактерий. Например, споры бацилл сибирской язвы выдерживают кипячение в течение 1020 с. Все микроорганизмы, включая и споровые, погибают при температуре 165170°С в течение часа. Действие высоких температур на микроорганизмы положено в основу стерилизации. ,
Высушивание. Для нормальной жизнедеятельности микроорганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы, нарушается целостность цитоплаз-
магической мембраны, что ведет к гибели клетки. Некоторые микроорганизмы под влиянием высушивания погибают уже через несколько минут: это менингококки, гонококки. Более устойчивыми к высушиванию являются возбудители туберкулеза, которые могут сохранять свою жизнеспособность до 9 месяцев, а также капсульные формы бактерий. Особенно устойчивыми к высушиванию являются споры. Например, споры плесневых грибов могут сохранять способность к прорастанию в течение 20 лет, а споры сибирской язвы могут сохраняться в почве до 100 лет.
Для хранения микроорганизмов и изготовления лекарственных препаратов из бактерий применяется метод лио-фильной сушки. Сущность метода состоит в том, что микроорганизмы сначала замораживают при -273 °С, а потом высушивают в условиях вакуума. При этом микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких лет. Таким способом, например, изготавливают биопрепарат «колибактерин», содержащий штаммы Е. coli.
Лучистая энергия. В природе бактериальные клетки постоянно подвергаются воздействию солнечной радиации. Прямые солнечные лучи губительно действуют на микроорганизмы. Это относится к ультрафиолетовому спектру солнечного света (УФ-лучи), они инактивируют ферменты клетки и разрушают ДНК. Патогенные бактерии более чувствительны к действию УФ-лучей, чем сапрофиты. Поэтому в бактериологической лаборатории микроорганизмы выращивают и хранят в темноте.
Опыт Бухнера показывает, насколько УФ-лучи губительно действуют на клетки: чашку Петри с плотной средой засевают сплошным газоном. Часть посева накрывают бумагой, и ставят чашку Петри на солнце, а затем через некоторое время ее ставят в термостат. Прорастают только те микроорганизмы, которые находились под бумагой. Поэтому значение солнечного света для оздоровления окружающей среды очень велико.
Бактерицидное действие УФ-лучей используют для сте-
рилизации закрытых помещений: операционных, родильных отделений, перевязочных, в детских садах и т. д. Для этого используются бактерицидные лампы ультрафиолетового излучения с длиной волны 200400 нм.
На микроорганизмы оказывают влияние и другие виды лучистой энергии это рентгеновское излучение, а-, р- и у-лучи оказывают губительное действие на микроорганизмы только в больших дозах. Эти лучи разрушают ядерную структуру клетки. В последние годы радиационным методом стерилизуют изделия для одноразового использования шприцы, шовный материал, чашки Петри.
Малые дозы излучений, наоборот, могут стимулировать рост микроорганизмов.
Ультразвук вызывает поражение клетки. Под действием ультразвука внутри клетки возникает очень высокое давление. Это приводит к разрыву клеточной стенки и гибели клетки. Ультразвук используют для стерилизации продуктов: молока, фруктовых соков.
Высокое давление. К атмосферному давлению бактерии, а особенно споры, очень устойчивы. В природе встречаются бактерии, которые живут в морях и океанах на глубине 1000 10 000 м под давлением от 100 до 900 атм. Сочетанное действие повышенных температур и повышенного давления используется в паровых стерилизаторах для стерилизации паром под давлением.
§ 2. Химические факторы
Влияние химических веществ на микроорганизмы различно. Оно зависит от химического соединения, его концентрации, продолжительности воздействия.
В малых концентрациях химическое вещество может являться питанием для бактерий, а в больших оказывать на них губительное действие. Например, соль NaCl в малых количествах добавляют в питательные среды. Так же существуют галофильные микроорганизмы, которые предпочитают соленую среду. В больших концентрациях NaCl задер-
живает размножение микроорганизмов. Для примера можно привести консервирование в быту: при недостаточном количестве соли баллоны с овощами могут «взрываться».
Многие химические вещества изспользуются в медицине в качестве дезинфицирующих средств. К ним относятся фенолы, соли тяжелых металлов, кислоты, щелочи. К наиболее распространенным дезрастворам относят хлоросодер-жащие соединения: хлорная известь, хлорамин Б, дихлор-1, сульфохлорантин, хлорцин и др. Активность дезинфицирующих веществ не одинакова и зависит от времени экспозиции, концентрации, температуры. В качестве контрольных микроорганизмов для изучения действия дезрастворов используют S. typhi и S. aureus. Для дезинфекции могут использоваться кислоты: 40% раствор уксусной кислоты для обеззараживания обуви. Виды дезинфекций: профилактическая для предупреждения и распространения инфекций; текущая при возникновении эпидемического очага и заключительная после окончания эпидемической вспышки, (см. схему «Характеристика показаний для дезинфекции»)
Некоторые химические вещества используются в качестве антисептиков. Антисептики это противомикробные вещества, которые используются для обработки биологических поверхностей. Антисептика это комплекс мероприятий, направленных на уничтожение микробов в ране или организме в целом, на предупреждение и ликвидацию воспалительного процесса. К антисептикам относятся:
препараты йода (спиртовый раствор йода, йодинол, йодоформ, раствор Люголя);
* соединения тяжелых металлов (соли ртути, серебра, цинка);
* химические вещества нитрофуранового ряда (фуразо-лидон, фурациллин);
окислители (перекись водорода, калия перманганат);
* кислоты и их соли (салициловая, борная);
* красители (метиленовый синий, бриллиантовый зеленый).
Характеристика показаний для дезинфекции
Виды дезинфекции
Профилактическая
В медицинской практике антибиотики используются для лечения многих инфекционных заболеваний. Антагонизм может развиваться в форме конкуренции за источники питания. Если один микроорганизм использует другой организм как источник питания, то такой вид антагонизма называется паразитизмом. Примером паразитизма является отношение вирус хозяин, бактериофаг бактерии.



2. Реакция флокуляцни и РН
Реакция флоккуляции основана на способности токсина или анатоксина (АГ) при смешивании в эквивалентных соотношениях с антитоксической сывороткой (АТ) образовывать помутнение, а затем рыхлый осадок (флоккулят).
Значение: для титрования антитоксических сывороток, токсинов и анатоксинов, определение титров токсинов.


3. Вирусы ветряной оспы и опоясывающего лишая
Альфа-герпесвирусы
К данному подсемейству относятся два серотипа вируса простого герпеса ВПГ-1 и ВПГ-2, которые имеют общие групповые антигены и сходные биологические признаки, а также вирус ветряной оспы и опоясывающего лишая (герпес-зостер).
В патогенезе, клинике и эпидемиологии заболеваний, вызванных этими вирусами, имеются существенные различия.
Патогенез. Вирус герпеса ВПГ-1 является возбудителем острого гингивостоматита и фарингита, афтозного стоматита, герпетической экземы, кератоконъюнктивита, менингоэнцефалита.
Вирус персистирует в ганглиях тройничного нерва.
При воздушно-капельном заражении первичная репродукция вируса происходит в клетках эпителия слизистой оболочки рта. При контактном заражении в клетках кожи или конъюнктивы глаза. По лимфатическим сосудам вирус может попасть в кровь, вызывая в определенных случаях генерализованную инфекцию.
ВПГ-2 поражает преимущественно лиц, которые достигли половой зрелости, передаваясь половым путем, а также новорожденных, которые инфицируются при прохождении через родовые пути матери. ВПГ-2 вызывает генитальный герпес, герпес новорожденных и, кроме того, ВПГ-2 играет определенную роль в этиологии рака шейки матки.
Оба типа вируса, проникая в организм через поврежденную кожу, могут вызывать раневой герпес.
Иммунитет. При первичном иммунном ответе появляются ти-поспецифические вируснейтрализующие антитела класса IgM, которые в случае инфекции, вызванной ВПГ-2, нейтрализуют вирусы обоих серотипов. При вторичном иммунном ответе накапливаются IgG к этим же серотипам. Присутствие в сыворотке крови антител одновременно с вирусами герпеса свидетельствует о длительном вирусоносительстве. У здоровых лиц антитела к ВПГ-1 обнаружены в 90 % случаев.
Экология и распространение. Вирусы герпеса являются неустойчивыми к действию физических и химических факторов. Они разрушаются органическими растворителями, детергентами, протеолитическими ферментами. При 5052 °С инактивация наступает через 30 мин. На поверхностях различных предметов при комнатной температуре инфекционные свойства вирусов герпеса исчезают за несколько часов. Вирусы разрушаются под действием ультразвука, повторного замораживания и оттаивания, УФ-облучения. Источник инфекции больные люди и носители. ВПГ-1 передается обычно контактным путем от матерей новорожденным и маленьким детям (от 6 мес до 3 лет). Заболевание протекает в виде везикулярного стоматита. Кроме того, вирус может передаваться воздушно-капельным путем. Передача ВПГ-2 происходит половым путем. Новорожденные инфицируются во время родов.
Лабораторная диагностика. Для экспресс-диагностики готовят мазки-отпечатки из соскоба герпетических везикул, красят по Романовскому Гимзе и микроскопируют. При положительной реакции обнаруживают гигантские многоядерные клетки с внутриклеточными включениями.


















































Билет ЗЗ
Санитарная м/б, определение, цели, задачи, методы
1. Предмет и задачи санитарной микробиологии
Санитарная микробиология - наука, изучающая микрофлору окружающего нас мира и вызываемые ею процессы, которые могут представлять опасность для здоровья человека.
Имея целью оценку возможного влияния микрофлоры окружающей среды на здоровье человека, санитарная микробиология призвана решать весьма важные и сложные задачи. Одной из наиболее важных задач является оценка различных объектов окружающей среды с точки зрения инфекционной опасности для здоровья человека. С этой целью осуществляется выявление патогенных микроорганизмов и продуктов их жизнедеятельности, другой важной задачей является санитарно-бактериологическая оценка качества воды, воздуха, продуктов питания по бактериологическим показаниям. Санитарная микробиология разрабатывает и совершенствует методы микробиологических исследований различных объектов внешней среды. На основании получаемых при этом материалов устанавливаются нормативы, по которым можно судить о соответствии микрофлоры окружающей среды и ее отдельных объектов гигиеническим требованиям. Важнейшим направлением санитарной микробиологии является оценка путей воздействий человека и животных на окружающую среду, приводящих к ее загрязнению опасными для здоровья микроорганизмами. При этом имеются в виду обычные процессы взаимного обмена микрофлорой между живыми существами и окружающим их миром, а также такая практическая деятельность человека, которая может вызвать массивное накопление патогенных микробов на объектах внешней среды. Помимо этого, санитарная микробиология постоянно разрабатывает рекомендации по оздоровлению окружающей среды путем воздействия на ее микрофлору. Так, например, работники санитарной микробиологии обеспечивают непрерывный контроль за эффективностью очистки водопроводных вод, а также обезвреживания отбросов.
Многообразные связи человека с окружающей средой складывались на протяжении многих тысячелетии. Одним из факторов окружающей среды, способным оказывать на человека неблагоприятное влияние, являются бактерии и вирусы. Вредное воздействие на здоровье человека может проявляться разными путями. Наиболее важное значение имеет попадание в организм человека патогенных микробов, их токсинов или других продуктов жизнедеятельности, обладающих биологической активностью.
Ущерб для здоровья может наноситься и в результате использования микробами каких-либо объектов, необходимых человеку для поддержания нормальной жизнедеятельности, например, при порче ими пищевых продуктов. Наконец, микрофлора внешней среды может наносить ущерб хозяйственной деятельности человека, тем самым косвенно влияя на его благосостояние. В частности, речь может идти о порче сырьевых материалов или о разрушении сооружений.
В настоящее время разработки санитарной микробиологии широко используются не только в различных отраслях профилактической и лечебной медицины, но и в промышленности, строительстве, сельском хозяйстве. В связи с этим изучение основных санитарно-микробиологических методов и нормативов является в наше время неотъемлемой частью подготовки квалифицированного врача любого профиля.
ИФА. определение, компоненты, механизм, варианты постановки, применение
АТ + Е(метка), сохраняющие все свои свойтсва.
Прямой (сендвич) ИФА – АГ-твердая фаза + АТ(фермент) + промывка; сероид.
Непрямой ИФА – АГ больного + Ig + промывка; кач. и колич. Серодиагн.
Наиболее широкое применение находит твердофазный имму-ноферментный анализ (ИФА). Он основан на том, что белки прочно адсорбируются на пластинках, например из поливинил-хлорида. Один из наиболее распространенных на практике вариантов ИФА основан на использовании меченых ферментом специфических антител и иммобилизованных антител той же специфичности. К носителю с иммобилизованными антителами добавляют раствор с анализируемым антигеном. В процессе инкубации на твердой фазе образуются специфические комплексы антиген антитело. Затем носитель отмывают от несвязавшихся компонентов и добавляют гомологичные антитела, меченные ферментом, которые связываются со свободными валентностями антигена в составе комплексов. После вторичной инкубации и удаления избытка этих меченных ферментом антител определяют ферментативную активность на носителе, величина которой будет пропорциональна начальной концентрации исследуемого антигена.
С целью максимального упрощения использования ИФА разрабатываются так называемые «безреагентные» системы, в которых все необходимые компоненты иммобилизованы или импрегнированы в пористую поверхность. Для проведения анализа необходимо только нанести на носитель образец и визуально наблюдать изменение окраски носителя, происходящее вследствие образования продукта ферментативной реакции.
Области применения и чувствительность ИФА аналогичны РИА. Однако ИФА по сравнению с РИА обладает целым рядом преимуществ: не используются радиоактивные изотопы, стабильность конъюгатов позволяет хранить их в течение длительного времени, измерение оптической плотности проводят в оптическом диапазоне, результаты ИФА можно оценивать полуколичественно без применения аппаратуры (визуально). ИФА очень легко поддается автоматизации.
Возб-ль краснухи
Краснуха (устар. германская корь, коревая краснуха) острозаразное вирусное заболевание, характеризующееся слабо выраженными явлениями общей интоксикации, неяркой мелкопятнистой сыпью по всему телу, проявляющееся быстро распространяющейся сыпью на коже, увеличением лимфоузлов (особенно затылочных), обычно незначительным по-
вышением температуры. У детей до 90% случаев заболевания протекает без видимых симптомов. Инфекция имеет осенне-весеннюю сезонность, увеличением затылочных и заднешейных лимфатических узлов и поражением плода у беременных. Нередко краснуха проявляется только небольшим повышением температуры тела и увеличением лимфатических узлов без появления сыпи.
Краснуха не тяжелая инфекционная болезнь, которая однако при инфицировании беременных может вызвать серьезную фетопатию (синдром врожденной краснухи СВК), заканчивающуюся нередко выкидышем или рождением ребенка с различными тяжелыми пороками развития, такими как слепота, глухота, врожденные пороки сердца. При инфицировании в первые 3 месяца беременности инфекция плода наступает в 90% случаев.
Источником инфекции является человек, больной выраженной или стертой формой краснухи, протекающей без сыпи. Вирус выделяется во внешнюю среду за неделю до заболевания и в течение недели после высыпания.
Процесс развития болезни. Вирус краснухи проникает в организм через слизистую оболочку дыхательных путей и кровью разносится по всему организму.
У беременных вирус краснухи попадает в плод и приводит к замедлению его роста, а также к формированию различных уродств. Заболевание краснухой на 34-й неделе беременности обусловливает врожденные уродства в 60% случаев, на 1316-й неделе и позже в 7%.
После перенесенного заболевания развивается стойкая пожизненная невосприимчивость к нему.
Передается воздушно-капельным путем. Инкубационный период составляет 12 недели. Заболевший человек заразен за 7 дней до появления сыпи и до 710 дня после высыпания. Заболевание начинается остро. Появляются увеличение и болезненность заднешейных и затылочных лимфоузлов, небольшая слабость, недомогание, умеренная головная боль, температура тела повышается до 38°С.
Одновременно на лице, через несколько часов на теле наблюдаются обильная сыпь в виде бледно-розовых пятнышек до 1 см круглой или овальной формы, умеренно выраженный сухой кашель, першение, саднение, сухость в горле, небольшой насморк. Повышенная температура тела и сыпь сохраняются 13 дня, на несколько дней дольше увеличение лимфатических узлов. Характерно появление сыпи вначале на коже лица, с последовательным охватом сыпью всего тела. Типичным является припухание затылочных лимфоузлов. Могут отмечаться симптомы острого респираторного заболевания. В целом, заболевание у детей протекает легко, осложнения наблюдаются редко. Наиболее грозным осложнением является краснушный (наподобие коревого) энцефалит (воспаление мозга), его частота составляет 1:5000 1:6000 случаев.
Большинство больных не нуждаются в специальном лечении. Применяются средства для лечения симптомов и осложнений, облегчающие общее состояние. После перенесенного заболевания развивается пожизненный иммунитет, однако его напряженность с возрастом и под воздействием различных обстоятельств может падать. Таким образом, перенесенное в детстве заболевание краснухой не может служить 100% гарантией от повторного заболевания.
У подростков и взрослых краснуха протекает значительно тяжелее. Более выражены лихорадка, явления интоксикации (недомогание, разбитость), отмечается поражение глаз (конъюнктивит). Характерным для взрослых (с большей частотой у женщин) является поражение мелких (фаланговые, пястно-фаланговые) и реже крупных (коленные, локтевые) суставов. В одну из эпидемий частыми были жалобы на боли в яичниках.
Заболевание беременной женщины приводит к инфицированию плода. В зависимости от срока беременности, на котором происходит заражение, у плода с различной вероятностью (в I триместре вероятность достигает 90%, во II до
75%, в III 50%) формируются множественные пороки развития. Наиболее характерными являются поражение органа зрения (катаракта, глаукома, помутнение роговицы), органа слуха (глухота), сердца (врожденные пороки). Также к СВК относят пороки формирования челюстно-лицевого аппарата, головного мозга (микроцефалия, умственная отсталость), внутренних органов (желтуха, увеличение печени, миокардит и др.) и костей (остеопороз в метаэпифизах длинных трубчатых костей). В 15% случаев краснуха приводит к выкидышу, мертворождению. При диагностике краснухи у беременной осуществляется искусственное прерывание беременности.
Лечение больных краснухой обычно проводится дома, так же, как больных острыми респираторными вирусными инфекциями.
Переболевшим краснухой в первые 16 недель беременности рекомендуется ее прерывание.
Профилактика. Для предупреждения краснухи применяется живая ослабленная вакцина, которая через 20 дней после введения создает невосприимчивость к заболеванию в течение 10 лет.
Для обеспечения стойкой невосприимчивости к краснухе достаточно одной прививки. Первичная вакцинация рекомендуется всем детям начиная с 1215 мес. Ревакцинации следует проводить девочкам в возрасте 1114 лет, а также женщинам не позднее, чем за 3 мес. до предполагаемой беременности.
Детьми вакцинация переносится очень хорошо. У взрослых может отмечаться незначительное увеличение лимфатических узлов и кратковременное небольшое повышение температуры тела.
Беременных женщин вакцинировать нельзя. Кроме того, в течение 3 месяцев после прививки беременность нежелательна, так как имеется риск поражения плода вирусом вакцины.
Изоляция больного краснухой прекращается через 4 дня после появления сыпи.




















Заголовок 1 Заголовок 215

Приложенные файлы

  • doc 19302319
    Размер файла: 665 kB Загрузок: 0

Добавить комментарий