Tema4 (1)


Контрольная работа № 4Введение в математический анализТЕМА 4. Введение в математический анализ.
Число, переменная, функция.
Предел функции.
Основные виды неопределенностей.
СПИСОК ЛИТЕРАТУРЫБугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов:в 3т.-5-е изд.,стер.-М.:Дрофа .- (Высшее образование. Современный учебник).т.2. Дифференциальное и интегральное исчисление.-2003.-509 с.
Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. пособие: в 2-х т.- Изд. стер. –М.: Интеграл – Пресс.Т.1. -2001.- 415 с.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Учеб. для вузов: в 3-х томах. – 8-е изд.-М.: Физматлит. т.1 – 2001. -697 с.
Берман Г.Н. Сборник задач по курсу математического анализа: Учеб. пособие. -22-е изд., перераб.- СПб: Профессия, 2003.-432 с.
Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов: В 3-х томах. – 5-е изд., перераб. и доп. –М.: Дрофа. Т.1. – 2003.-703 с.
Ильин В.А., Позняк Э.Г. Основы математического анализа. Учеб. для вузов в 2-х частях. – 6-е изд. стер. –М. Физматлит, 2002, -646 с.
Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я.-6-е изд..-М.: ОНИКС 21 век, ч.2. -2002.-416 с.
Решение типового варианта контрольной работы.
Вычислить пределы функций.
а) Найти .
Решение. Прежде всего, проверим, применимы ли к данной дроби теоремы о пределах, или мы имеем дело с неопределенностью. Для этого найдем пределы числителя и знаменателя дроби. Функции и являются бесконечно большими. Поэтому, ,.
Следовательно, имеем дело с неопределенностью вида .
Для раскрытия этой неопределенности и использовании теоремы о пределе отношения двух функций выделим в числителе и в знаменателе в старшей для числителя и знаменателя степени в качестве сомножителя и сократим дробь.

Ответ. 0.
б) Найти .
Решение. Для раскрытия неопределенности в этом случае, нужно разложить числитель и знаменатель на множители и сократить дробь на общий множитель.

Ответ. -9.
Найти .
Решение. Для вычисления данного предела подставим значение в функцию, стоящую под знаком предела. Получим,
.
Ответ. -3.
в) Найти .
Решение. Для раскрытия неопределенности в этом случае, нужно умножить числитель и знаменатель на выражение, сопряженное числителю, а затем сократить дробь на общий множитель.

Ответ. .
г) Найти .
Решение. Для раскрытия неопределенности в этом случае, нужно выделить первый замечательный предел:

Ответ. k
д) Найти .
Решение. Для раскрытия неопределенности в этом случае, нужно произведение преобразовать в частное, то есть неопределенность свести к неопределенности или .

Выделяем первый замечательный предел, то есть, умножаем числитель и знаменатель на . Получаем,
.
Ответ. .
е) Найти .
Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел:.

Ответ. .
ж) Найти
Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел: .

Ответ. .
Найти
Решение. Подставим значение в функцию, стоящую под знаком предела. Получим,

Ответ. .
Задана функция и два значения аргумента .
Требуется:
найти пределы функции при приближении к каждому из данных значений слева и справа;
установить является ли данная функция непрерывной или разрывной для каждого из данных значений ;
сделать схематический чертеж.
Решение. Найдем левый и правый пределы в точке .


Левый предел конечен и равен 0, а правый предел бесконечен. Следовательно, по определению точка разрыва второго рода.
Найдем левый и правый пределы в точке .
, т.е. точка непрерывности функции .
Сделаем схематический чертеж.

Рис. 1
3. Функция задается различными аналитическими выражениями для различных областей независимой переменной.
Требуется:
найти точки разрыва функции, если они существуют;
найти скачок функции в каждой точке разрыва;
сделать схематический чертеж.

Решение. Функция непрерывна для , функция непрерывна в каждой точке из , функция непрерывна в каждой точке интервала .
Точки, в которых функция может иметь разрыв, это точки и , где функция меняет свое аналитическое выражение.
Исследуем точку .
, , . Таким образом, точка есть точка непрерывности функции .
Исследуем точку .
, , . Таким образом, односторонние пределы существуют, конечны, но не равны между собой. По определению, исследуемая точка – точка разрыва первого рода. Величина скачка функции в точке разрыва равен .
Сделаем схематический чертеж

Рис. 2

Контрольная работа №4.
Вариант 1
Вычислить пределы функций.
а);
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 2
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е); .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .

3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 3
1. Вычислить пределы функций.
а)
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 4
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 5
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 6
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 7
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 8
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 9
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 10
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 11
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 12
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 13
Вычислить пределы функций.
а) ;
б) ; ;
в)
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 14
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 15
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 16
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 17
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 18
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 19
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 20
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 21
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 22
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 23
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 24
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 25
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 26
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 27
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 28
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 29
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г) ;
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.

Контрольная работа №4.
Вариант 30
Вычислить пределы функций.
а) ;
б) ; ;
в) ;
г);
д) ;
е) ; .
2. Дана функция и два значения аргумента .
Требуется.
1)Найти значение функции при стремлении аргумента к каждому из данных значений ;
2) Определить, является ли функция непрерывной или разрывной при данных значениях ;
3) Сделать схематический чертеж в окрестности точек и .
, .
3. Для кусочно-заданной функции .
Требуется.
1) Найти точки разрыва функции, если они существуют;
2) Найти скачок функции в каждой точке разрыва;
3) Сделать схематический чертеж.


Приложенные файлы

  • docx 19009915
    Размер файла: 1 MB Загрузок: 0

Добавить комментарий